Results 1 
3 of
3
Making Data Structures Persistent
, 1989
"... This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any t ..."
Abstract

Cited by 247 (6 self)
 Add to MetaCart
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and effiient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O(1) space bounds for insertion and deletion.
AN O(n log log n)TIME ALGORITHM FOR TRIANGULATING A SIMPLE POLYGON
, 1988
"... Given a simple nvertex polygon, the triangulation problem is to partition the interior of the polygon into n2 triangles by adding n3 nonintersecting diagonals. We propose an O(n log logn)time algorithm for this problem, improving on the previously best bound of O (n log n) and showing that tria ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
Given a simple nvertex polygon, the triangulation problem is to partition the interior of the polygon into n2 triangles by adding n3 nonintersecting diagonals. We propose an O(n log logn)time algorithm for this problem, improving on the previously best bound of O (n log n) and showing that triangulation is not as hard as sorting. Improved algorithms for several other computational geometry problems, including testing whether a polygon is simple, follow from our result.
Purely Functional Representations of Catenable Sorted Lists.
 In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
, 1996
"... The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structur ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structure can coexist indefinitely. Recent results illustrate the surprising power of pure functionality. One such result was the development of a representation of doubleended queues with catenation that supports all operations, including catenation, in worstcase constant time [19].