Results 1  10
of
102
An AutomataTheoretic Approach to BranchingTime Model Checking
 JOURNAL OF THE ACM
, 1998
"... Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques ..."
Abstract

Cited by 314 (66 self)
 Add to MetaCart
Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques have long been thought to introduce an exponential penalty, making them essentially useless for modelchecking. Recently, Bernholtz and Grumberg have shown that this exponential penalty can be avoided, though they did not match the linear complexity of nonautomatatheoretic algorithms. In this paper we show that alternating tree automata are the key to a comprehensive automatatheoretic framework for branching temporal logics. Not only, as was shown by Muller et al., can they be used to obtain optimal decision procedures, but, as we show here, they also make it possible to derive optimal modelchecking algorithms. Moreover, the simple combinatorial structure that emerges from the a...
An automatatheoretic approach to linear temporal logic
 Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in Computer Science
, 1996
"... Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over s ..."
Abstract

Cited by 232 (22 self)
 Add to MetaCart
(Show Context)
Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over some alphabet. Thus,programs and specificationscan be viewed as descriptions of languagesover some alphabet. The automatatheoretic perspective considers the relationships between programs and their specifications as relationships between languages.By translating programs and specifications to automata, questions about programs and their specifications can be reduced to questions about automata. More specifically, questions such as satisfiability of specifications and correctness of programs with respect to their specifications can be reduced to questions such as nonemptiness and containment of automata. Unlike classical automata theory, which focused on automata on finite words, the applications to program specification, verification, and synthesis, use automata on infinite words, since the computations in which we are interested are typically infinite. This paper provides an introduction to the theory of automata on infinite words and demonstrates its applications to program specification, verification, and synthesis. 1
Reasoning about The Past with TwoWay Automata
 In 25th International Colloqium on Automata, Languages and Programming, ICALP ’98
, 1998
"... Abstract. The pcalculus can be viewed as essentially the "ultimate" program logic, as it expressively subsumes all propositional program logics, including dynamic logics, process logics, and temporal logics. It is known that the satisfiability problem for the pcalculus is EXPTIMEcomplete ..."
Abstract

Cited by 134 (12 self)
 Add to MetaCart
(Show Context)
Abstract. The pcalculus can be viewed as essentially the "ultimate" program logic, as it expressively subsumes all propositional program logics, including dynamic logics, process logics, and temporal logics. It is known that the satisfiability problem for the pcalculus is EXPTIMEcomplete. This upper bound, however, is known for a version of the logic that has only forward modalities, which express weakest preconditions, but not backward modalities, which express strongest postconditions. Our main result in this paper is an exponential time upper bound for the satisfiability problem of the pcalculus with both forward and backward modalities. To get this result we develop a theory of twoway alternating automata on infinite trees. 1
Alternating refinement relations
 In Proceedings of the Ninth International Conference on Concurrency Theory (CONCUR’98), volume 1466 of LNCS
, 1998
"... Abstract. Alternating transition systems are a general model for composite systems which allow the study of collaborative as well as adversarial relationships between individual system components. Unlike in labeled transition systems, where each transition corresponds to a possible step of the syste ..."
Abstract

Cited by 123 (16 self)
 Add to MetaCart
(Show Context)
Abstract. Alternating transition systems are a general model for composite systems which allow the study of collaborative as well as adversarial relationships between individual system components. Unlike in labeled transition systems, where each transition corresponds to a possible step of the system (which may involve some or all components), in alternating transition systems, each transition corresponds to a possible move in a game between the components. In this paper, we study refinement relations between alternating transition systems, such as “Does the implementation refine the set £ of specification components without constraining the components not in £? ” In particular, we generalize the definitions of the simulation and trace containment preorders from labeled transition systems to alternating transition systems. The generalizations are called alternating simulation and alternating trace containment. Unlike existing refinement relations, they allow the refinement of individual components within the context of a composite system description. We show that, like ordinary simulation, alternating simulation can be checked in polynomial time using a fixpoint computation algorithm. While ordinary trace containment is PSPACEcomplete, we establish alternating trace containment to be EXPTIMEcomplete. Finally, we present logical characterizations for the two preorders in terms of ATL, a temporal logic capable of referring to games between system components. 1
On the Expressive Completeness of the Propositional MuCalculus With Respect to Monadic Second Order Logic
, 1996
"... . Monadic second order logic (MSOL) over transition systems is considered. It is shown that every formula of MSOL which does not distinguish between bisimilar models is equivalent to a formula of the propositional calculus. This expressive completeness result implies that every logic over tran ..."
Abstract

Cited by 68 (4 self)
 Add to MetaCart
. Monadic second order logic (MSOL) over transition systems is considered. It is shown that every formula of MSOL which does not distinguish between bisimilar models is equivalent to a formula of the propositional calculus. This expressive completeness result implies that every logic over transition systems invariant under bisimulation and translatable into MSOL can be also translated into the calculus. This gives a precise meaning to the statement that most propositional logics of programs can be translated into the calculus. 1 Introduction Transition systems are structures consisting of a nonempty set of states, a set of unary relations describing properties of states and a set of binary relations describing transitions between states. It was advocated by many authors [26, 3] that this kind of structures provide a good framework for describing behaviour of programs (or program schemes), or even more generally, engineering systems, provided their evolution in time is disc...
Reasoning in expressive description logics with fixpoints based on automata on infinite trees
 In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99
, 1999
"... In the last years, the investigation on Description Logics (DLs) has been driven by the goal of applying them in several areas, such as, software engineering, information systems, databases, information integration, and intelligent access to the web. The modeling requirements arising in the above ar ..."
Abstract

Cited by 57 (12 self)
 Add to MetaCart
In the last years, the investigation on Description Logics (DLs) has been driven by the goal of applying them in several areas, such as, software engineering, information systems, databases, information integration, and intelligent access to the web. The modeling requirements arising in the above areas have stimulated the need for very rich languages, including fixpoint constructs to represent recursive structures. We study a DL comprising the most general form of fixpoint constructs on concepts, all classical concept forming constructs, plus inverse roles, nary relations, qualified number restrictions, and inclusion assertions. We establish the EXPTIME decidability of such logic by presenting a decision procedure based on a reduction to nonemptiness of alternating automata on infinite trees. We observe that this is the first decidability result for a logic combining inverse roles, number restrictions, and general fixpoints. 1
Module checking revisited
 In Proc. 9th CAV, LNCS 1254
, 1997
"... Abstract. When we verify the correctness of an open system with respect to a desired requirement, we should take into consideration the different environments with which the system may interact. Each environment induces a different behavior of the system, and we want all these behaviors to satisfy t ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
(Show Context)
Abstract. When we verify the correctness of an open system with respect to a desired requirement, we should take into consideration the different environments with which the system may interact. Each environment induces a different behavior of the system, and we want all these behaviors to satisfy the requirement. Module checking is an algorithmic method that checks, given an open system (modeled as a finite structure) and a desired requirement (specified by a temporallogic formula), whether the open system satisfies the requirement with respect to all environments. In this paper we extend the modulechecking method with respect to two orthogonal issues. Both issues concern the fact that often we are not interested in satisfaction of the requirement with respect to all environments, but only with respect to these that meet some restriction. We consider the case where the environment has incomplete information about the system; i.e., when the system has internal variables, which are not readable by its environment, and the case where some assumptions are known about environment; i.e., when the system is guaranteed to satisfy the requirement only when its environment satisfies certain assumptions. We study the complexities of the extended modulechecking problems. In particular, we show that for universal temporal logics (e.g., LTL, ¥ CTL, and ¥ CTL ¦), module checking with incomplete information coincides with module checking, which by itself coincides with model checking. On the other hand, for nonuniversal temporal logics (e.g., CTL and CTL ¦), module checking with incomplete information is harder than module checking, which is by itself harder than model checking. 1
An automatatheoretic approach to reasoning about infinitestate systems
 LNCS
, 2000
"... Abstract. We develop an automatatheoretic framework for reasoning about infinitestate sequential systems. Our framework is based on the observation that states of such systems, which carry a finite but unbounded amount of information, can be viewed as nodes in an infinite tree, and transitions betw ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
(Show Context)
Abstract. We develop an automatatheoretic framework for reasoning about infinitestate sequential systems. Our framework is based on the observation that states of such systems, which carry a finite but unbounded amount of information, can be viewed as nodes in an infinite tree, and transitions between states can be simulated by finitestate automata. Checking that the system satisfies a temporal property can then be done by an alternating twoway tree automaton that navigates through the tree. As has been the case with finitestate systems, the automatatheoretic framework is quite versatile. We demonstrate it by solving several versions of the modelchecking problem for §calculus specifications and prefixrecognizable systems, and by solving the realizability and synthesis problems for §calculus specifications with respect to prefixrecognizable environments. 1