Results 1 
8 of
8
OrderSorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations
 Theoretical Computer Science
, 1992
"... This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of pol ..."
Abstract

Cited by 208 (33 self)
 Add to MetaCart
This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of polymorphism and overloading, partial operations (as total on equationally defined subsorts), exception handling, and an operational semantics based on term rewriting. We give the basic algebraic constructions for OSA, including quotient, image, product and term algebra, and we prove their basic properties, including Quotient, Homomorphism, and Initiality Theorems. The paper's major mathematical results include a notion of OSA deduction, a Completeness Theorem for it, and an OSA Birkhoff Variety Theorem. We also develop conditional OSA, including Initiality, Completeness, and McKinseyMalcev Quasivariety Theorems, and we reduce OSA to (conditional) MSA, which allows lifting many known MSA results to OSA. Retracts, which intuitively are left inverses to subsort inclusions, provide relatively inexpensive runtime error handling. We show that it is safe to add retracts to any OSA signature, in the sense that it gives rise to a conservative extension. A final section compares and contrasts many different approaches to OSA. This paper also includes several examples demonstrating the flexibility and applicability of OSA, including some standard benchmarks like STACK and LIST, as well as a much more substantial example, the number hierarchy from the naturals up to the quaternions.
Introducing OBJ
, 1993
"... This is an introduction to the philosophy and use of OBJ, emphasizing its operational semantics, with aspects of its history and its logical semantics. Release 2 of OBJ3 is described in detail, with many examples. OBJ is a wide spectrum firstorder functional language that is rigorously based on ..."
Abstract

Cited by 120 (29 self)
 Add to MetaCart
This is an introduction to the philosophy and use of OBJ, emphasizing its operational semantics, with aspects of its history and its logical semantics. Release 2 of OBJ3 is described in detail, with many examples. OBJ is a wide spectrum firstorder functional language that is rigorously based on (order sorted) equational logic and parameterized programming, supporting a declarative style that facilitates verification and allows OBJ to be used as a theorem prover.
The Requirement and Design Specification Language SPECTRUM  An Informal Introduction
, 1993
"... This paper gives a short introduction to the algebraic specification language Spectrum. Using simple, wellknown examples, the objectives and concepts of Spectrum are explained. The Spectrum language is based on axiomatic specification techniques and is oriented towards functional programs. Spectru ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
This paper gives a short introduction to the algebraic specification language Spectrum. Using simple, wellknown examples, the objectives and concepts of Spectrum are explained. The Spectrum language is based on axiomatic specification techniques and is oriented towards functional programs. Spectrum includes the following features: ffl partial functions, definedness logic and fixed point theory ffl higherorder elements and typed abstraction ffl nonstrict functions and infinite objects ffl full firstorder predicate logic with induction principles ffl predicative polymorphism with sort classes ffl parameterization and modularization Spectrum is based on the concept of loose semantics.
Explicit Graphs in a Functional Model for Spatial Databases
 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 1994
"... Observing that networks are ubiquitous in applications for spatial databases, we define a new data model and query language that especially supports graph structures. This model integrates concepts of functional data modeling with ordersorted algebra. Besides object and data type hierarchies grap ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
Observing that networks are ubiquitous in applications for spatial databases, we define a new data model and query language that especially supports graph structures. This model integrates concepts of functional data modeling with ordersorted algebra. Besides object and data type hierarchies graphs are available as an explicit modeling tool, and graph operations are part of the query language. Graphs have three classes of components, namely nodes, edges, and explicit paths. These are at the same time object types within the object type hierarchy and can be used like any other type. Explicit paths are useful because “real world ” objects often correspond to paths in a network. Furthermore, a dynamic generalization concept is introduced to handle heterogeneous collections of objects in a query. In connection with spatial data types this leads to powerful modeling and querying capabilities for spatial databases, in particular for spatially embedded networks such as highways, rivers, public transport, and so forth. We use multilevel ordersorted algebra as a formal framework for the specification of our model. Roughly spoken, the first level algebra defines types and operations of the query language whereas the second level algebra defines kinds (collections of types) and type constructors as functions between kinds and so provides the types that can be used at the first level.
An Oxford Survey of Order Sorted Algebra
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
, 1994
"... ..."
The Logical Framework of SPECTRUM
"... The SPECTRUM project concentrates on the process of developing wellstructured, precise system specifications. Spectrum is a specification language, with a deduction calculus and a development methodology. An informal presentation of the SPECTRUM language with many examples illustrating its prope ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
The SPECTRUM project concentrates on the process of developing wellstructured, precise system specifications. Spectrum is a specification language, with a deduction calculus and a development methodology. An informal presentation of the SPECTRUM language with many examples illustrating its properties is given in [BFG+93a, BFG+93b]. The purpose of this article is to describe its formal semantics.
Specifying Type Systems with MultiLevel OrderSorted Algebra
 3rd Conf. on Algebraic Methodology and Software Technology
, 1993
"... We propose to use ordersorted algebras (OSA) on multiple levels to describe languages together with their type systems. It is demonstrated that even advanced aspects can be modeled, including, parametric polymorphism, complex relationships between different sorts of an operation's rank, the specifi ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We propose to use ordersorted algebras (OSA) on multiple levels to describe languages together with their type systems. It is demonstrated that even advanced aspects can be modeled, including, parametric polymorphism, complex relationships between different sorts of an operation's rank, the specification of a variable number of parameters for operations, and type constructors using values (and not only types) as arguments. The basic idea is to use a signature to describe a type system where sorts denote sets of type names and operations denote type constructors. The values of an algebra for such a signature are then used as sorts of another signature now describing a language having the previously defined type system. This way of modeling is not restricted to two levels, and we will show useful applications of threelevel algebras.
Algebraic System Specification and Development: Survey and Annotated Bibliography  Second Edition 
, 1997
"... Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . ..."
Abstract
 Add to MetaCart
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.2 Action Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.7 Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.1 Early Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.2 Recent Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . 55 4.7.3 The Common Framework Initiative. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Methodology 57 5.1 Development Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 Applica...