Results 11  20
of
576
Metalogical Frameworks
, 1992
"... In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the me ..."
Abstract

Cited by 60 (18 self)
 Add to MetaCart
In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the metalogic of the object language being implemented. We also reason about the implementation itself, say to know it is correct; this is done in a programming logic. How do all these logics relate? This paper considers that question and more. We show that by taking the view that the metalogic is primary, these other parts are related in standard ways. The metalogic should be suitably rich so that the object logic can be presented as an abstract data type, and it must be suitably computational (or constructive) so that an instance of that type is an implementation. The data type abstractly encodes all that is relevant for metareasoning, i.e., not only the term constructing functions but also the...
A generic library of floatingpoint numbers and its application to exact computing
 In 14th International Conference on Theorem Proving in Higher Order Logics
, 2001
"... Abstract. In this paper we present a general library to reason about floatingpoint numbers within the Coq system. Most of the results of the library are proved for an arbitrary floatingpoint format and an arbitrary base. A special emphasis has been put on proving properties for exact computing, i. ..."
Abstract

Cited by 53 (6 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we present a general library to reason about floatingpoint numbers within the Coq system. Most of the results of the library are proved for an arbitrary floatingpoint format and an arbitrary base. A special emphasis has been put on proving properties for exact computing, i.e. computing without rounding errors. 1
Mechanizing Coinduction and Corecursion in Higherorder Logic
 Journal of Logic and Computation
, 1997
"... A theory of recursive and corecursive definitions has been developed in higherorder logic (HOL) and mechanized using Isabelle. Least fixedpoints express inductive data types such as strict lists; greatest fixedpoints express coinductive data types, such as lazy lists. Wellfounded recursion expresse ..."
Abstract

Cited by 51 (6 self)
 Add to MetaCart
(Show Context)
A theory of recursive and corecursive definitions has been developed in higherorder logic (HOL) and mechanized using Isabelle. Least fixedpoints express inductive data types such as strict lists; greatest fixedpoints express coinductive data types, such as lazy lists. Wellfounded recursion expresses recursive functions over inductive data types; corecursion expresses functions that yield elements of coinductive data types. The theory rests on a traditional formalization of infinite trees. The theory is intended for use in specification and verification. It supports reasoning about a wide range of computable functions, but it does not formalize their operational semantics and can express noncomputable functions also. The theory is illustrated using finite and infinite lists. Corecursion expresses functions over infinite lists; coinduction reasons about such functions. Key words. Isabelle, higherorder logic, coinduction, corecursion Copyright c fl 1996 by Lawrence C. Paulson Content...
The Nuprl Open Logical Environment
, 2000
"... The Nuprl system is a framework for reasoning about mathematics and programming. Over the years its design has been substantially improved to meet the demands of largescale applications. Nuprl LPE, the newest release, features an open, distributed architecture centered around a flexible knowled ..."
Abstract

Cited by 47 (17 self)
 Add to MetaCart
(Show Context)
The Nuprl system is a framework for reasoning about mathematics and programming. Over the years its design has been substantially improved to meet the demands of largescale applications. Nuprl LPE, the newest release, features an open, distributed architecture centered around a flexible knowledge base and supports the cooperation of independent formal tools. This paper gives a brief overview of the system and the objectives that are addressed by its new architecture.
Semantic Essence of AsmL
, 2004
"... The Abstract State Machine Language, AsmL, is a novel executable specification language based on the theory of Abstract State Machines. AsmL is objectoriented, provides highlevel mathematical datastructures, and is built around the notion of synchronous updates and finite choice. AsmL is full ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
The Abstract State Machine Language, AsmL, is a novel executable specification language based on the theory of Abstract State Machines. AsmL is objectoriented, provides highlevel mathematical datastructures, and is built around the notion of synchronous updates and finite choice. AsmL is fully integrated into the .NET framework and Microsoft development tools. In this paper, we explain the design rationale of AsmL and provide static and dynamic semantics for a kernel of the language.
Translating HigherOrder Clauses to FirstOrder Clauses
"... Abstract. Interactive provers typically use higherorder logic, while automatic provers typically use firstorder logic. In order to integrate interactive provers with automatic ones, it is necessary to translate higherorder formulae to firstorder form. The translation should ideally be both sound ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
(Show Context)
Abstract. Interactive provers typically use higherorder logic, while automatic provers typically use firstorder logic. In order to integrate interactive provers with automatic ones, it is necessary to translate higherorder formulae to firstorder form. The translation should ideally be both sound and practical. We have investigated several methods of translating function applications, types and λabstractions. Omitting some type information improves the success rate, but can be unsound, so the interactive prover must verify the proofs. This paper presents experimental data that compares the translations in respect of their success rates for three automatic provers. 1.
An Industrially Effective Environment for Formal Hardware Verification
 IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems
, 2005
"... ..."
(Show Context)
Locales: A sectioning concept for Isabelle
 IN BERTOT ET AL
, 1999
"... Locales are a means to define local scopes for the interactive proving process of the theorem prover Isabelle. They delimit a range in which fixed assumption are made, and theorems are proved that depend on these assumptions. A locale may also contain constants defined locally and associated with pr ..."
Abstract

Cited by 45 (10 self)
 Add to MetaCart
(Show Context)
Locales are a means to define local scopes for the interactive proving process of the theorem prover Isabelle. They delimit a range in which fixed assumption are made, and theorems are proved that depend on these assumptions. A locale may also contain constants defined locally and associated with pretty printing syntax. Locales can be seen as a simple form of modules. They are similar to reasoning and similar applications of theorem provers. This paper motivates the concept of locales by examples from abstract algebraic reasoning. It also discusses some implementation issues.
Modular Data Structure Verification
 EECS DEPARTMENT, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
, 2007
"... This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java ..."
Abstract

Cited by 44 (21 self)
 Add to MetaCart
This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java programs with dynamically allocated data structures. Developers write Jahob specifications in classical higherorder logic (HOL); Jahob reduces the verification problem to deciding the validity of HOL formulas. I present a new method for proving HOL formulas by combining automated reasoning techniques. My method consists of 1) splitting formulas into individual HOL conjuncts, 2) soundly approximating each HOL conjunct with a formula in a more tractable fragment and 3) proving the resulting approximation using a decision procedure or a theorem prover. I present three concrete logics; for each logic I show how to use it to approximate HOL formulas, and how to decide the validity of formulas in this logic. First, I present an approximation of HOL based on a translation to firstorder logic, which enables the use of existing resolutionbased theorem provers. Second, I present an approximation of HOL based on field constraint analysis, a new technique that enables