Results 1  10
of
32
Logic Programming and Negation: A Survey
 JOURNAL OF LOGIC PROGRAMMING
, 1994
"... We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them. ..."
Abstract

Cited by 245 (8 self)
 Add to MetaCart
We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them.
Logic Programming and Knowledge Representation
 Journal of Logic Programming
, 1994
"... In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and sh ..."
Abstract

Cited by 224 (21 self)
 Add to MetaCart
In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and show how each of the added features extends the representational power of the language.
On the Computational Cost of Disjunctive Logic Programming: Propositional Case
, 1995
"... This paper addresses complexity issues for important problems arising with disjunctive logic programming. In particular, the complexity of deciding whether a disjunctive logic program is consistent is investigated for a variety of wellknown semantics, as well as the complexity of deciding whethe ..."
Abstract

Cited by 114 (26 self)
 Add to MetaCart
This paper addresses complexity issues for important problems arising with disjunctive logic programming. In particular, the complexity of deciding whether a disjunctive logic program is consistent is investigated for a variety of wellknown semantics, as well as the complexity of deciding whether a propositional formula is satised by all models according to a given semantics. We concentrate on nite propositional disjunctive programs with as wells as without integrity constraints, i.e., clauses with empty heads; the problems are located in appropriate slots of the polynomial hierarchy. In particular, we show that the consistency check is P 2 complete for the disjunctive stable model semantics (in the total as well as partial version), the iterated closed world assumption, and the perfect model semantics, and we show that the inference problem for these semantics is P 2 complete; analogous results are derived for the an
Propositional Circumscription and Extended Closed World Reasoning are $\Pi^P_2$complete
 Theoretical Computer Science
, 1993
"... Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction prob ..."
Abstract

Cited by 99 (22 self)
 Add to MetaCart
Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction problem for arbitrary propositional theories under the extended closed world assumption or under circumscription is $\Pi^P_2$complete, i.e., complete for a class of the second level of the polynomial hierarchy. We answer this question by proving these problems $\Pi^P_2$complete, and we show how this result applies to other variants of closed world reasoning.
Stationary Semantics for Normal and Disjunctive Logic Programs
 Annals of Mathematics and Artificial Intelligence
, 1991
"... this paper we show, however, that stationary expansions can be equivalently defined in terms of classical, 2valued logic. As a byproduct, we obtain a simpler and more natural description of stationary expansions. ..."
Abstract

Cited by 71 (14 self)
 Add to MetaCart
this paper we show, however, that stationary expansions can be equivalently defined in terms of classical, 2valued logic. As a byproduct, we obtain a simpler and more natural description of stationary expansions.
On Logic Program Semantics with Two Kinds of Negation
 Int. Joint Conf. and Symp. on LP
, 1992
"... Recently several authors have stressed and showed the importance of having a second kind of negation in logic programs for use in deductive databases, knowledge representation, and nonmonotonic reasoning [6, 7, 8, 9, 13, 14, 15, 24]. Different semantics for logic programs extended with :negation ( ..."
Abstract

Cited by 49 (16 self)
 Add to MetaCart
Recently several authors have stressed and showed the importance of having a second kind of negation in logic programs for use in deductive databases, knowledge representation, and nonmonotonic reasoning [6, 7, 8, 9, 13, 14, 15, 24]. Different semantics for logic programs extended with :negation (extended logic programs) have appeared [1, 4, 6, 9, 11, 12, 17, 19, 24] but, contrary to what happens with semantics for normal logic programs, there is no general comparison among them, specially in what concerns the use and meaning of the newly introduced :negation. The goal of this paper is to contrast a variety of these semantics in what concerns their use and meaning of :negation, and its relation to classical negation and to the default negation of normal programs, here denoted by not : To this purpose we define a parametrizeable schema to encompass and characterize a diversity of proposed semantics for extended logic programs, where the parameters are two: one the axioms AX: defin...
Disjunctive Semantics based upon Partial and BottomUp Evaluation
 Proceedings of the 12th Int. Conf. on Logic Programming
, 1995
"... We present a new and general approach of defining semantics for disjunctive logic programs. Our framework consists of two parts: (1) a semantical , where semantics are defined in an abstract way as the weakest semantics satisfying certain properties, and (2) a procedural, namely a bottomup queryeva ..."
Abstract

Cited by 45 (12 self)
 Add to MetaCart
We present a new and general approach of defining semantics for disjunctive logic programs. Our framework consists of two parts: (1) a semantical , where semantics are defined in an abstract way as the weakest semantics satisfying certain properties, and (2) a procedural, namely a bottomup queryevaluation method based on operators working on conditional facts (introduced independently by Bry and Dung/Kanchansut for nondisjunctive programs). As to (1), we concentrate in this paper on a particular set of abstract properties (the most important being the unfolding or partial evaluation property GPPE) and define a new semantics DWFS. Our semantics coincides for normal programs with the wellfounded semantics WFS. For positive disjunctive programs DWFS coincides with the generalized closed world semantics GCWA. As a byproduct, we get new characterizations of WFS and GCWA. DWFS is strongly related to Przymusinski's STATIC semantics: we conjecture that they coincide w.r.t. to the derivati...
Is Intractability of NonMonotonic Reasoning a Real Drawback?
 Artificial Intelligence
, 1996
"... Several studies about computational complexity of nonmonotonic reasoning (NMR) showed that nonmonotonic inference is significantly harder than classical, monotonic inference. This contrasts with the general idea that NMR can be used to make knowledge representation and reasoning simpler, not harde ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
Several studies about computational complexity of nonmonotonic reasoning (NMR) showed that nonmonotonic inference is significantly harder than classical, monotonic inference. This contrasts with the general idea that NMR can be used to make knowledge representation and reasoning simpler, not harder. In this paper we show that, to some extent, NMR fulfills the representation goal. In particular, we prove that nonmonotonic formalisms such as circumscription and default logic allow for a much more compact and natural representation of propositional knowledge than propositional calculus. Proofs are based on a suitable definition of compilable inference problem, and on nonuniform complexity classes. Some results about intractability of circumscription and default logic can therefore be interpreted as the price one has to pay for having such an extracompact representation. On the other hand, intractability of inference and compactness of representation are not equivalent notions: we ex...
Characterizations of the Disjunctive Wellfounded Semantics: Confluent Calculi and Iterated GCWA
 Journal of Automated Reasoning
, 1997
"... . Recently Brass and Dix have introduced the semantics DWFS for general disjunctive logic programs. The interesting feature of this approach is that it is both semantically and prooftheoretically founded. Any program \Phi is associated a normalform res(\Phi), called the residual program, by a non ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
. Recently Brass and Dix have introduced the semantics DWFS for general disjunctive logic programs. The interesting feature of this approach is that it is both semantically and prooftheoretically founded. Any program \Phi is associated a normalform res(\Phi), called the residual program, by a nontrivial bottomup construction using least fixpoints of two monotonic operators. We show in this paper, that the original calculus, consisting of some simple transformations, has a very strong and appealing property: it is confluent and terminating. This means that all the transformations can be applied in any order: we always arrive at an irreducible program (no more transformation is applicable) and this program is already uniquely determined. Moreover, it coincides with the normalform res(\Phi) of the program we started with. The semantics DWFS can be read off from res(\Phi) immediately. No proper subset of the calculus has these properties  only when we restrict to certain subclasse...