Results 1 
2 of
2
On the Computational Cost of Disjunctive Logic Programming: Propositional Case
, 1995
"... This paper addresses complexity issues for important problems arising with disjunctive logic programming. In particular, the complexity of deciding whether a disjunctive logic program is consistent is investigated for a variety of wellknown semantics, as well as the complexity of deciding whethe ..."
Abstract

Cited by 113 (26 self)
 Add to MetaCart
This paper addresses complexity issues for important problems arising with disjunctive logic programming. In particular, the complexity of deciding whether a disjunctive logic program is consistent is investigated for a variety of wellknown semantics, as well as the complexity of deciding whether a propositional formula is satised by all models according to a given semantics. We concentrate on nite propositional disjunctive programs with as wells as without integrity constraints, i.e., clauses with empty heads; the problems are located in appropriate slots of the polynomial hierarchy. In particular, we show that the consistency check is P 2 complete for the disjunctive stable model semantics (in the total as well as partial version), the iterated closed world assumption, and the perfect model semantics, and we show that the inference problem for these semantics is P 2 complete; analogous results are derived for the an
Propositional Circumscription and Extended Closed World Reasoning are $\Pi^P_2$complete
 Theoretical Computer Science
, 1993
"... Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction prob ..."
Abstract

Cited by 99 (22 self)
 Add to MetaCart
Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction problem for arbitrary propositional theories under the extended closed world assumption or under circumscription is $\Pi^P_2$complete, i.e., complete for a class of the second level of the polynomial hierarchy. We answer this question by proving these problems $\Pi^P_2$complete, and we show how this result applies to other variants of closed world reasoning.