Results 1  10
of
25
Propositional Circumscription and Extended Closed World Reasoning are $\Pi^P_2$complete
 Theoretical Computer Science
, 1993
"... Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction prob ..."
Abstract

Cited by 99 (22 self)
 Add to MetaCart
Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction problem for arbitrary propositional theories under the extended closed world assumption or under circumscription is $\Pi^P_2$complete, i.e., complete for a class of the second level of the polynomial hierarchy. We answer this question by proving these problems $\Pi^P_2$complete, and we show how this result applies to other variants of closed world reasoning.
Some Connections between Bounded Query Classes and NonUniform Complexity
 In Proceedings of the 5th Structure in Complexity Theory Conference
, 1990
"... This paper is dedicated to the memory of Ronald V. Book, 19371997. ..."
Abstract

Cited by 71 (23 self)
 Add to MetaCart
This paper is dedicated to the memory of Ronald V. Book, 19371997.
Bounded Queries to SAT and the Boolean Hierarchy
 Theoretical Computer Science
, 1991
"... We study the complexity of decision problems that can be solved by a polynomialtime Turing machine that makes a bounded number of queries to an NP oracle. Depending on whether we allow some queries to depend on the results of other queries, we obtain two (probably) different hierarchies. We present ..."
Abstract

Cited by 64 (12 self)
 Add to MetaCart
We study the complexity of decision problems that can be solved by a polynomialtime Turing machine that makes a bounded number of queries to an NP oracle. Depending on whether we allow some queries to depend on the results of other queries, we obtain two (probably) different hierarchies. We present several results relating the bounded NP query hierarchies to each other and to the Boolean hierarchy. We also consider the similarlydefined hierarchies of functions that can be computed by a polynomialtime Turing machine that makes a bounded number of queries to an NP oracle. We present relations among these two hierarchies and the Boolean hierarchy. In particular we show for all k that there are functions computable with 2 k parallel queries to an NP set that are not computable in polynomial time with k serial queries to any oracle, unless P = NP. As a corollary k + 1 parallel queries to an NP set allow us to compute more functions than are computable with only k parallel queries to a...
Approximable Sets
 Information and Computation
, 1994
"... Much structural work on NPcomplete sets has exploited SAT's dselfreducibility. In this paper we exploit the additional fact that SAT is a dcylinder to show that NPcomplete sets are psuperterse unless P = NP. In fact, every set that is NPhard under polynomialtime n o(1) tt reductions is p ..."
Abstract

Cited by 54 (10 self)
 Add to MetaCart
Much structural work on NPcomplete sets has exploited SAT's dselfreducibility. In this paper we exploit the additional fact that SAT is a dcylinder to show that NPcomplete sets are psuperterse unless P = NP. In fact, every set that is NPhard under polynomialtime n o(1) tt reductions is psuperterse unless P = NP. In particular no pselective set is NPhard under polynomialtime n o(1) tt reductions unless P = NP. In addition, no easily countable set is NPhard under Turing reductions unless P = NP. Selfreducibility does not seem to suffice for our main result: in a relativized world, we construct a dselfreducible set in NP \Gamma P that is polynomialtime 2tt reducible to a pselective set. 1 Introduction Assume we are given a set A ` f0; 1g . Even if A is intractable there might be a way to compute some partial information about A efficiently, i.e., in polynomial time. We are interested in information of the following kind: Given a list of k strings x 1 ; : : : ;...
QueryLimited Reducibilities
, 1995
"... We study classes of sets and functions computable by algorithms that make a limited number of queries to an oracle. We distinguish between queries made in parallel (each question being independent of the answers to the others, as in a truthtable reduction) and queries made in serial (each question ..."
Abstract

Cited by 41 (14 self)
 Add to MetaCart
We study classes of sets and functions computable by algorithms that make a limited number of queries to an oracle. We distinguish between queries made in parallel (each question being independent of the answers to the others, as in a truthtable reduction) and queries made in serial (each question being permitted to depend on the answers to the previous questions, as in a Turing reduction). We define computability by a set of functions, and we show that it captures the informationtheoretic aspects of computability by a fixed number of queries to an oracle. Using that concept, we prove a very powerful result, the Nonspeedup Theorem, which states that 2 n parallel queries to any fixed nonrecursive oracle cannot be answered by an algorithm that makes only n queries to any oracle whatsoever. This is the tightest general result possible. A corollary is the intuitively obvious, but nontrivial result that additional parallel queries to an oracle allow us to compute additional functions; t...
A Relationship between Difference Hierarchies and Relativized Polynomial Hierarchies
, 1993
"... Chang and Kadin have shown that if the difference hierarchy over NP collapses to level k, then the polynomial hierarchy (PH) is equal the kth level of the difference hierarchy over \Sigma p 2 . We simplify their proof and obtain a slightly stronger conclusion: If the difference hierarchy over NP c ..."
Abstract

Cited by 39 (8 self)
 Add to MetaCart
Chang and Kadin have shown that if the difference hierarchy over NP collapses to level k, then the polynomial hierarchy (PH) is equal the kth level of the difference hierarchy over \Sigma p 2 . We simplify their proof and obtain a slightly stronger conclusion: If the difference hierarchy over NP collapses to level k, then PH collapses to i P NP (k\Gamma1)tt j NP , the class of sets recognized in polynomial time with k \Gamma 1 nonadaptive queries to a set in NP NP and an unlimited number of queries to a set in NP. We also extend the result to classes other than NP: For any class C that has p m complete sets and is closed under p conj  and NP m reductions (alternatively, closed under p disj  and coNP m reductions), if the difference hierarchy over C collapses to level k, then PH C = i P NP (k\Gamma1)tt j C . Then we show that the exact counting class C=P is closed under p disj  and coNP m  reductions. Consequently, if the difference hiera...
PolynomialTime Membership Comparable Sets
, 1994
"... This paper studies a notion called polynomialtime membership comparable sets. For a function g, a set A is polynomialtime gmembership comparable if there is a polynomialtime computable function f such that for any x 1 ; \Delta \Delta \Delta ; xm with m g(maxfjx 1 j; \Delta \Delta \Delta ; jx m j ..."
Abstract

Cited by 31 (4 self)
 Add to MetaCart
This paper studies a notion called polynomialtime membership comparable sets. For a function g, a set A is polynomialtime gmembership comparable if there is a polynomialtime computable function f such that for any x 1 ; \Delta \Delta \Delta ; xm with m g(maxfjx 1 j; \Delta \Delta \Delta ; jx m jg), outputs b 2 f0; 1g m such that (A(x 1 ); \Delta \Delta \Delta ; A(xm )) 6= b. The following is a list of major results proven in the paper. 1. Polynomialtime membership comparable sets construct a proper hierarchy according to the bound on the number of arguments. 2. Polynomialtime membership comparable sets have polynomialsize circuits. 3. For any function f and for any constant c ? 0, if a set is p f(n)tt reducible to a Pselective set, then the set is polynomialtime (1 + c) log f(n)membership comparable. 4. For any C chosen from fPSPACE;UP;FewP;NP;C=P;PP;MOD 2 P; MOD 3 P; \Delta \Delta \Deltag, if C ` Pmc(c log n) for some c ! 1, then C = P. As a corollary of the last tw...
NPhard Sets are PSuperterse Unless R = NP
, 1992
"... A set A is pterse (psuperterse) if, for all q, it is not possible to answer q queries to A by making only q \Gamma 1 queries to A (any set X). Formally, let PF A qtt be the class of functions reducible to A via a polynomialtime truthtable reduction of norm q, and let PF A qT be the class of ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
A set A is pterse (psuperterse) if, for all q, it is not possible to answer q queries to A by making only q \Gamma 1 queries to A (any set X). Formally, let PF A qtt be the class of functions reducible to A via a polynomialtime truthtable reduction of norm q, and let PF A qT be the class of functions reducible to A via a polynomialtime Turing reduction that makes at most q queries. A set A is pterse if PF A qtt 6` PF A (q\Gamma1)T for all constants q. A is psuperterse if PF A qtt 6` PF X qT for all constants q and sets X . We show that all NPhard sets (under p tt reductions) are psuperterse, unless it is possible to distinguish uniquely satisfiable formulas from satisfiable formulas in polynomial time. Consequently, all NPcomplete sets are psuperterse unless P = UP (oneway functions fail to exist), R = NP (there exist randomized polynomialtime algorithms for all problems in NP), and the polynomialtime hierarchy collapses. This mostly solves the main open...
On ResourceBounded Instance Complexity
 Theoretical Computer Science A
, 1995
"... The instance complexity of a string x with respect to a set A and time bound t, ic t (x : A), is the length of the shortest program for A that runs in time t, decides x correctly, and makes no mistakes on other strings (where "don't know" answers are permitted). The Instance Complexity Conjecture of ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
The instance complexity of a string x with respect to a set A and time bound t, ic t (x : A), is the length of the shortest program for A that runs in time t, decides x correctly, and makes no mistakes on other strings (where "don't know" answers are permitted). The Instance Complexity Conjecture of Ko, Orponen, Schoning, and Watanabe states that for every recursive set A not in P and every polynomial t there is a polynomial t 0 and a constant c such that for infinitely many x, ic t (x : A) C t 0 (x) \Gamma c, where C t 0 (x) is the t 0 time bounded Kolmogorov complexity of x. In this paper the conjecture is proved for all recursive tally sets and for all recursive sets which are NPhard under honest reductions, in particular it holds for all natural NPhard problems. The method of proof also yields the polynomialspace bounded and the exponentialtime bounded versions of the conjecture in full generality. On the other hand, the conjecture itself turns out to be oracl...
Learning Recursive Functions from Approximations
, 1995
"... Investigated is algorithmic learning, in the limit, of correct programs for recursive functions f from both input/output examples of f and several interesting varieties of approximate additional (algorithmic) information about f . Specifically considered, as such approximate additional informatio ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
Investigated is algorithmic learning, in the limit, of correct programs for recursive functions f from both input/output examples of f and several interesting varieties of approximate additional (algorithmic) information about f . Specifically considered, as such approximate additional information about f , are Rose's frequency computations for f and several natural generalizations from the literature, each generalization involving programs for restricted trees of recursive functions which have f as a branch. Considered as the types of trees are those with bounded variation, bounded width, and bounded rank. For the case of learning final correct programs for recursive functions, EX learning, where the additional information involves frequency computations, an insightful and interestingly complex combinatorial characterization of learning power is presented as a function of the frequency parameters. For EX learning (as well as for BClearning, where a final sequence of cor...