Results 11  20
of
73
Using Causal Information and Local Measures to Learn Bayesian Networks
, 1993
"... In previous work we developed a method of learning Bayesian Network models from raw data. This method relies on the well known minimal description length (MDL) principle. The MDL principle is particularly well suited to this task as it allows us to tradeoff, in a principled way, the accuracy of the ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
In previous work we developed a method of learning Bayesian Network models from raw data. This method relies on the well known minimal description length (MDL) principle. The MDL principle is particularly well suited to this task as it allows us to tradeoff, in a principled way, the accuracy of the learned network against its practical usefulness. In this paper we present some new results that have arisen from our work. In particular, we present a new local way of computing the description length. This allows us to make significant improvements in our search algorithm. In addition, we modify our algorithm so that it can take into account partial domain information that might be provided by a domain expert. The local computation of description length also opens the door for local refinement of an existent network. The feasibility of our approach is demonstrated by experiments involving networks of a practical size.
A Survey of Algorithms for RealTime Bayesian Network Inference
 In In the joint AAAI02/KDD02/UAI02 workshop on RealTime Decision Support and Diagnosis Systems
, 2002
"... As Bayesian networks are applied to more complex and realistic realworld applications, the development of more efficient inference algorithms working under realtime constraints is becoming more and more important. This paper presents a survey of various exact and approximate Bayesian network ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
As Bayesian networks are applied to more complex and realistic realworld applications, the development of more efficient inference algorithms working under realtime constraints is becoming more and more important. This paper presents a survey of various exact and approximate Bayesian network inference algorithms. In particular, previous research on realtime inference is reviewed. It provides a framework for understanding these algorithms and the relationships between them. Some important issues in realtime Bayesian networks inference are also discussed.
A characterization of the Dirichlet distribution through global and local parameter independence, The Annals of Statistics
, 1997
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 31 (7 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Inference in Bayesian Networks
, 1999
"... A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduce ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduces major current methods for exact computation, briefly surveys approximation methods, and closes with a brief discussion of open issues.
Userexpertise modeling with empirically derived probabilistic implication networks
, 1996
"... ..."
Bayesian Mixture Modeling by Monte Carlo Simulation
, 1991
"... . It is shown that Bayesian inference from data modeled by a mixture distribution can feasibly be performed via Monte Carlo simulation. This method exhibits the true Bayesian predictive distribution, implicitly integrating over the entire underlying parameter space. An infinite number of mixture com ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
. It is shown that Bayesian inference from data modeled by a mixture distribution can feasibly be performed via Monte Carlo simulation. This method exhibits the true Bayesian predictive distribution, implicitly integrating over the entire underlying parameter space. An infinite number of mixture components can be accommodated without difficulty, using a prior distribution for mixing proportions that selects a reasonable subset of components to explain any finite training set. The need to decide on a "correct" number of components is thereby avoided. The feasibility of the method is shown empirically for a simple classification task. Introduction Mixture distributions [8, 20] are an appropriate tool for modeling processes whose output is thought to be generated by several different underlying mechanisms, or to come from several different populations. One aim of a mixture model analysis may be to identify and characterize these underlying "latent classes" [2, 7], either for some scient...
The use of conflicts in searching Bayesian networks
, 1993
"... This paper discusses how conflicts (as used by the consistencybased diagnosis community) can be adapted to be used in a searchbased algorithm for computing prior and posterior probabilities in discrete Bayesian Networks. This is an "anytime " algorithm, that at any stage can estimate the pro ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
This paper discusses how conflicts (as used by the consistencybased diagnosis community) can be adapted to be used in a searchbased algorithm for computing prior and posterior probabilities in discrete Bayesian Networks. This is an "anytime " algorithm, that at any stage can estimate the probabilities and give an error bound. Whereas the most popular Bayesian net algorithms exploit the structure of the network for efficiency, we exploit probability distributions for efficiency; this algorithm is most suited to the case with extreme probabilities. This paper presents a solution to the inefficiencies found in naive algorithms, and shows how the tools of the consistencybased diagnosis community (namely conflicts) can be used effectively to improve the efficiency. Empirical results with networks having tens of thousands of nodes are presented.
Probabilistic conflicts in a search algorithm for estimating posterior probabilities in Bayesian networks
, 1996
"... This paper presents a search algorithm for estimating posterior probabilities in discrete Bayesian networks. It shows how conflicts (as used in consistencybased diagnosis) can be adapted to speed up the search. This algorithm is especially suited to the case where there are skewed distributions, al ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
This paper presents a search algorithm for estimating posterior probabilities in discrete Bayesian networks. It shows how conflicts (as used in consistencybased diagnosis) can be adapted to speed up the search. This algorithm is especially suited to the case where there are skewed distributions, although nothing about the algorithm or the definitions depends on skewness of distributions. The general idea is to forward simulate the network, based on the `normal' values for each variable (the value with high probability given its parents). When a predicted value is at odds with the observations, we analyse which variables were responsible for the expectation failure  these form a conflict  and continue forward simulation considering different values for these variables. This results in a set of possible worlds from which posterior probabilities  together with error bounds  can be 1 derived. Empirical results with Bayesian networks having tens of thousands of nodes are presented.
Decomposing Bayesian Networks: Triangulation of Moral Graph with Genetic Algorithms
 Statistics and Computing
, 1997
"... In this paper we consider the optimal decomposition of Bayesian networks. More concretely, we examine  empirically , the applicability of genetic algorithms to the problem of the triangulation of moral graphs. This problem constitutes the only difficult step in the evidence propagation algorithm ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
In this paper we consider the optimal decomposition of Bayesian networks. More concretely, we examine  empirically , the applicability of genetic algorithms to the problem of the triangulation of moral graphs. This problem constitutes the only difficult step in the evidence propagation algorithm of Lauritzen and Spiegelhalter (1988) and is known to be NPhard (Wen, 1991). We carry out experiments with distinct crossover and mutation operators and with different population sizes, mutation rates and selection biasses. The results are analyzed statistically. They turn out to improve the results obtained with most other known triangulation methods (Kjaerulff, 1990) and are comparable to the ones obtained with simulated annealing (Kjaerulff, 1990; Kjaerulff, 1992). Keywords: Bayesian networks, genetic algorithms, optimal decomposition, graph triangulation, moral graph, NPhard problems, statistical analysis. 1 Introduction The Bayesian networks constitute a reasoning method based on p...
A Stratified Simulation Scheme for Inference in Bayesian Belief Networks
 IN UNCERTAINTY IN AI, PROCEEDINGS OF THE TENTH CONFERENCE
, 1994
"... Simulation schemes for probabilistic inference in Bayesian belief networks offer many advantages over exact algorithms; for example, these schemes have a linear and thus predictable runtime while exact algorithms have exponential runtime. Experiments have shown that likelihood weighting is one of th ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
Simulation schemes for probabilistic inference in Bayesian belief networks offer many advantages over exact algorithms; for example, these schemes have a linear and thus predictable runtime while exact algorithms have exponential runtime. Experiments have shown that likelihood weighting is one of the most promising simulation schemes. In this paper, we present a new simulation scheme that generates samples more evenly spread in the sample space than the likelihood weighting scheme. We show both theoretically and experimentally that the stratified scheme outperforms likelihood weighting in average runtime and error in estimates of beliefs.