Results 1  10
of
679
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 760 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 621 (31 self)
 Add to MetaCart
A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with &quot;flat &quot; data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much of the relational structure present in our database. This paper builds on the recent work on probabilistic relational models (PRMs), and describes how to learn them from databases. PRMs allow the properties of an object to depend probabilistically both on other properties of that object and on properties of related objects. Although PRMs are significantly more expressive than standard models, such as Bayesian networks, we show how to extend wellknown statistical methods for learning Bayesian networks to learn these models. We describe both parameter estimation and structure learning — the automatic induction of the dependency structure in a model. Moreover, we show how the learning procedure can exploit standard database retrieval techniques for efficient learning from large datasets. We present experimental results on both real and synthetic relational databases. 1
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
 IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract

Cited by 589 (13 self)
 Add to MetaCart
(Show Context)
Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems that is exact when the factor graph is a tree, but only approximate when the factor graph has cycles. We show that BP fixed points correspond to the stationary points of the Bethe approximation of the free energy for a factor graph. We explain how to obtain regionbased free energy approximations that improve the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms. We emphasize the conditions a free energy approximation must satisfy in order to be a “valid ” or “maxentnormal ” approximation. We describe the relationship between four different methods that can be used to generate valid approximations: the “Bethe method, ” the “junction graph method, ” the “cluster variation method, ” and the “region graph method.” Finally, we explain how to tell whether a regionbased approximation, and its corresponding GBP algorithm, is likely to be accurate, and describe empirical results showing that GBP can significantly outperform BP.
Belief Propagation
, 2010
"... When a pair of nuclearpowered Russian submarines was reported patrolling off the eastern seaboard of the U.S. last summer, Pentagon officials expressed wariness over the Kremlin’s motivations. At the same time, these officials emphasized their confidence in the U.S. Navy’s tracking capabilities: “W ..."
Abstract

Cited by 481 (11 self)
 Add to MetaCart
When a pair of nuclearpowered Russian submarines was reported patrolling off the eastern seaboard of the U.S. last summer, Pentagon officials expressed wariness over the Kremlin’s motivations. At the same time, these officials emphasized their confidence in the U.S. Navy’s tracking capabilities: “We’ve known where they were,” a senior Defense Department official told the New York Times, “and we’re not concerned about our ability to track the subs.” While the official did not divulge the methods used by the Navy to track submarines, the Times added that such
Discriminative probabilistic models for relational data
, 2002
"... In many supervised learning tasks, the entities to be labeled are related to each other in complex ways and their labels are not independent. For example, in hypertext classification, the labels of linked pages are highly correlated. A standard approach is to classify each entity independently, igno ..."
Abstract

Cited by 419 (13 self)
 Add to MetaCart
(Show Context)
In many supervised learning tasks, the entities to be labeled are related to each other in complex ways and their labels are not independent. For example, in hypertext classification, the labels of linked pages are highly correlated. A standard approach is to classify each entity independently, ignoring the correlations between them. Recently, Probabilistic Relational Models, a relational version of Bayesian networks, were used to define a joint probabilistic model for a collection of related entities. In this paper, we present an alternative framework that builds on (conditional) Markov networks and addresses two limitations of the previous approach. First, undirected models do not impose the acyclicity constraint that hinders representation of many important relational dependencies in directed models. Second, undirected models are well suited for discriminative training, where we optimize the conditional likelihood of the labels given the features, which generally improves classification accuracy. We show how to train these models effectively, and how to use approximate probabilistic inference over the learned model for collective classification of multiple related entities. We provide experimental results on a webpage classification task, showing that accuracy can be significantly improved by modeling relational dependencies. 1
On the Optimality of Solutions of the MaxProduct Belief Propagation Algorithm in Arbitrary Graphs
, 2001
"... Graphical models, suchasBayesian networks and Markov random fields, represent statistical dependencies of variables by a graph. The maxproduct "belief propagation" algorithm is a localmessage passing algorithm on this graph that is known to converge to a unique fixed point when the gra ..."
Abstract

Cited by 243 (15 self)
 Add to MetaCart
Graphical models, suchasBayesian networks and Markov random fields, represent statistical dependencies of variables by a graph. The maxproduct "belief propagation" algorithm is a localmessage passing algorithm on this graph that is known to converge to a unique fixed point when the graph is a tree. Furthermore, when the graph is a tree, the assignment based on the fixedpoint yields the most probable a posteriori (MAP) values of the unobserved variables given the observed ones. Recently, good
Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data
 IN ICML
, 2004
"... In sequence modeling, we often wish to represent complex interaction between labels, such as when performing multiple, cascaded labeling tasks on the same sequence, or when longrange dependencies exist. We present dynamic conditional random fields (DCRFs), a generalization of linearchain cond ..."
Abstract

Cited by 167 (13 self)
 Add to MetaCart
(Show Context)
In sequence modeling, we often wish to represent complex interaction between labels, such as when performing multiple, cascaded labeling tasks on the same sequence, or when longrange dependencies exist. We present dynamic conditional random fields (DCRFs), a generalization of linearchain conditional random fields (CRFs) in which each time slice contains a set of state variables and edgesa distributed state representation as in dynamic Bayesian networks (DBNs)and parameters are tied across slices. Since exact
Towards highly reliable enterprise network services via inference of multilevel dependencies
 IN SIGCOMM
, 2007
"... Localizing the sources of performance problems in large enterprise networks is extremely challenging. Dependencies are numerous, complex and inherently multilevel, spanning hardware and software components across the network and the computing infrastructure. To exploit these dependencies for fast, ..."
Abstract

Cited by 160 (10 self)
 Add to MetaCart
Localizing the sources of performance problems in large enterprise networks is extremely challenging. Dependencies are numerous, complex and inherently multilevel, spanning hardware and software components across the network and the computing infrastructure. To exploit these dependencies for fast, accurate problem localization, we introduce an Inference Graph model, which is welladapted to userperceptible problems rooted in conditions giving rise to both partial service degradation and hard faults. Further, we introduce the Sherlock system to discover Inference Graphs in the operational enterprise, infer critical attributes, and then leverage the result to automatically detect and localize problems. To illuminate strengths and limitations of the approach, we provide results from a prototype deployment in a large enterprise network, as well as from testbed emulations and simulations. In particular, we find that taking into account multilevel structure leads to a 30 % improvement in fault localization, as compared to twolevel approaches.
Efficient structure learning of Markov networks using L1regularization
 In NIPS
, 2006
"... Markov networks are widely used in a wide variety of applications, in problems ranging from computer vision, to natural language, to computational biology. In most current applications, even those that rely heavily on learned models, the structure of the Markov network is constructed by hand, due to ..."
Abstract

Cited by 146 (3 self)
 Add to MetaCart
(Show Context)
Markov networks are widely used in a wide variety of applications, in problems ranging from computer vision, to natural language, to computational biology. In most current applications, even those that rely heavily on learned models, the structure of the Markov network is constructed by hand, due to the lack of effective algorithms for learning Markov network structure from data. In this paper, we provide a computationally effective method for learning Markov network structure from data. Our method is based on the use of L1 regularization on the weights of the loglinear model, which has the effect of biasing the model towards solutions where many of the parameters are zero. This formulation converts the Markov network learning problem into a convex optimization problem in a continuous space, which can be solved using efficient gradient methods. A key issue in this setting is the (unavoidable) use of approximate inference, which can lead to errors in the gradient computation when the network structure is dense. Thus, we explore the use of different feature introduction schemes and compare their performance. We provide results for our method on synthetic data, and on two real world data sets: modeling the joint distribution of pixel values in the MNIST data, and modeling the joint distribution of genetic sequence variations in the human HapMap data. We show that our L1based method achieves considerably higher generalization performance than the more standard L2based method (a Gaussian parameter prior) or pure maximumlikelihood learning. We also show that we can learn MRF network structure at a computational cost that is not much greater than learning parameters alone, demonstrating the existence of a feasible method for this important problem. 1
Combining phylogenetic and hidden Markov models in biosequence analysis
 J. Comput. Biol
, 2004
"... A few models have appeared in recent years that consider not only the way substitutions occur through evolutionary history at each site of a genome, but also the way the process changes from one site to the next. These models combine phylogenetic models of molecular evolution, which apply to individ ..."
Abstract

Cited by 139 (13 self)
 Add to MetaCart
(Show Context)
A few models have appeared in recent years that consider not only the way substitutions occur through evolutionary history at each site of a genome, but also the way the process changes from one site to the next. These models combine phylogenetic models of molecular evolution, which apply to individual sites, and hidden Markov models, which allow for changes from site to site. Besides improving the realism of ordinary phylogenetic models, they are potentially very powerful tools for inference and prediction—for gene finding, for example, or prediction of secondary structure. In this paper, we review progress on combined phylogenetic and hidden Markov models and present some extensions to previous work. Our main result is a simple and efficient method for accommodating higherorder states in the HMM, which allows for contextsensitive models of substitution— that is, models that consider the effects of neighboring bases on the pattern of substitution. We present experimental results indicating that higherorder states, autocorrelated rates, and multiple functional categories all lead to significant improvements in the fit of a combined phylogenetic and hidden Markov model, with the effect of higherorder states being particularly pronounced.