Results 1  10
of
311
The Quadratic Eigenvalue Problem
, 2001
"... . We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skewHermitian) and t ..."
Abstract

Cited by 262 (21 self)
 Add to MetaCart
(Show Context)
. We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skewHermitian) and the spectral properties of the problem. We classify numerical methods and catalogue available software. Key words. quadratic eigenvalue problem, eigenvalue, eigenvector, matrix, matrix polynomial, secondorder differential equation, vibration, Millennium footbridge, overdamped system, gyroscopic system, linearization, backward error, pseudospectrum, condition number, Krylov methods, Arnoldi method, Lanczos method, JacobiDavidson method AMS subject classifications. 65F30 Contents 1 Introduction 2 2 Applications of QEPs 4 2.1 Secondorder differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Vibration analysis of structural systems ...
ARPACK Users Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods.
, 1997
"... this document is intended to provide a cursory overview of the Implicitly Restarted Arnoldi/Lanczos Method that this software is based upon. The goal is to provide some understanding of the underlying algorithm, expected behavior, additional references, and capabilities as well as limitations of the ..."
Abstract

Cited by 215 (18 self)
 Add to MetaCart
(Show Context)
this document is intended to provide a cursory overview of the Implicitly Restarted Arnoldi/Lanczos Method that this software is based upon. The goal is to provide some understanding of the underlying algorithm, expected behavior, additional references, and capabilities as well as limitations of the software. 1.7 Dependence on LAPACK and BLAS
Krylov Projection Methods For Model Reduction
, 1997
"... This dissertation focuses on efficiently forming reducedorder models for large, linear dynamic systems. Projections onto unions of Krylov subspaces lead to a class of reducedorder models known as rational interpolants. The cornerstone of this dissertation is a collection of theory relating Krylov p ..."
Abstract

Cited by 213 (3 self)
 Add to MetaCart
(Show Context)
This dissertation focuses on efficiently forming reducedorder models for large, linear dynamic systems. Projections onto unions of Krylov subspaces lead to a class of reducedorder models known as rational interpolants. The cornerstone of this dissertation is a collection of theory relating Krylov projection to rational interpolation. Based on this theoretical framework, three algorithms for model reduction are proposed. The first algorithm, dual rational Arnoldi, is a numerically reliable approach involving orthogonal projection matrices. The second, rational Lanczos, is an efficient generalization of existing Lanczosbased methods. The third, rational power Krylov, avoids orthogonalization and is suited for parallel or approximate computations. The performance of the three algorithms is compared via a combination of theory and examples. Independent of the precise algorithm, a host of supporting tools are also developed to form a complete modelreduction package. Techniques for choosing the matching frequencies, estimating the modeling error, insuring the model's stability, treating multipleinput multipleoutput systems, implementing parallelism, and avoiding a need for exact factors of large matrix pencils are all examined to various degrees.
A Spectral Bundle Method for Semidefinite Programming
 SIAM JOURNAL ON OPTIMIZATION
, 1997
"... A central drawback of primaldual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically semidefinite relaxations arising in combinatorial applica ..."
Abstract

Cited by 172 (7 self)
 Add to MetaCart
(Show Context)
A central drawback of primaldual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically semidefinite relaxations arising in combinatorial applications have sparse and well structured cost and coefficient matrices of huge order. We present a method that allows to compute acceptable approximations to the optimal solution of large problems within reasonable time. Semidefinite programming problems with constant trace on the primal feasible set are equivalent to eigenvalue optimization problems. These are convex nonsmooth programming problems and can be solved by bundle methods. We propose replacing the traditional polyhedral cutting plane model constructed from subgradient information by a semidefinite model that is tailored for eigenvalue problems. Convergence follows from the traditional approach but a proof is included for completene...
A cyclic low rank Smith method for large sparse Lyapunov equations with applications in model reduction and optimal control
 SIAM J. Sci. Comput
, 1998
"... ..."
Deflation Techniques For An Implicitly ReStarted Arnoldi Iteration
 SIAM J. Matrix Anal. Appl
, 1996
"... . A deflation procedure is introduced that is designed to improve the convergence of an implicitly restarted Arnoldi iteration for computing a few eigenvalues of a large matrix. As the iteration progresses the Ritz value approximations of the eigenvalues of A converge at different rates. A numerical ..."
Abstract

Cited by 114 (9 self)
 Add to MetaCart
(Show Context)
. A deflation procedure is introduced that is designed to improve the convergence of an implicitly restarted Arnoldi iteration for computing a few eigenvalues of a large matrix. As the iteration progresses the Ritz value approximations of the eigenvalues of A converge at different rates. A numerically stable scheme is introduced that implicitly deflates the converged approximations from the iteration. We present two forms of implicit deflation. The first, a locking operation, decouples converged Ritz values and associated vectors from the active part of the iteration. The second, a purging operation, removes unwanted but converged Ritz pairs. Convergence of the iteration is improved and a reduction in computational effort is also achieved. The deflation strategies make it possible to compute multiple or clustered eigenvalues with a single vector restart method. A Block method is not required. These schemes are analyzed with respect to numerical stability and computational results are p...
A survey of model reduction methods for largescale systems
 Contemporary Mathematics
, 2001
"... An overview of model reduction methods and a comparison of the resulting algorithms is presented. These approaches are divided into two broad categories, namely SVD based and moment matching based methods. It turns out that the approximation error in the former case behaves better globally in freque ..."
Abstract

Cited by 96 (10 self)
 Add to MetaCart
(Show Context)
An overview of model reduction methods and a comparison of the resulting algorithms is presented. These approaches are divided into two broad categories, namely SVD based and moment matching based methods. It turns out that the approximation error in the former case behaves better globally in frequency while in the latter case the local behavior is better. 1 Introduction and problem statement Direct numerical simulation of dynamical systems has been an extremely successful means for studying complex physical phenomena. However, as more detail is included, the dimensionality of such simulations may increase to unmanageable levels of storage and computational requirements. One approach to overcoming this is through model reduction. The goal is to produce a low dimensional system that has
Recent computational developments in Krylov subspace methods for linear systems
 NUMER. LINEAR ALGEBRA APPL
, 2007
"... Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are metho ..."
Abstract

Cited by 86 (12 self)
 Add to MetaCart
Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are methods specifically tailored to systems with special properties such as special forms of symmetry and those depending on one or more parameters.
Rational Krylov algorithms for nonsymmetric Eigenvalue problems, II: Matrix pairs
, 1992
"... A new algorithm for the computation of eigenvalues of a nonsymmetric matrix pencil is described. It is a generalization of the shifted and inverted Lanczos (or Arnoldi) algorithm, in which several shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensol ..."
Abstract

Cited by 85 (0 self)
 Add to MetaCart
A new algorithm for the computation of eigenvalues of a nonsymmetric matrix pencil is described. It is a generalization of the shifted and inverted Lanczos (or Arnoldi) algorithm, in which several shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil, gives Ritz approximations to the solution of the original pencil. It is shown that the computed approximate solution is the exact solution of a perturbed pencil, and bounds and estimates of the perturbations are given. Results for a numerical example coming from a bifurcation problem arising from a hydrodynamical application are demonstrated. 1. INTRODUCTION We seek solutions to the generalized eigenvalue problem, (A \Gamma B)x = 0 ; (1) for large and sparse nonsymmetric matrices A and B. The matrices are too large to be treated by transformation methods such as the QRalgorithm, but not larger than that a factorization and solution of a linear system is f...
Approximation of largescale dynamical systems: An overview
, 2001
"... In this paper we review the state of affairs in the area of approximation of largescale systems. We distinguish among three basic categories, namely the SVDbased, the Krylovbased and the SVDKrylovbased approximation methods. The first two were developed independently of each other and have dist ..."
Abstract

Cited by 69 (3 self)
 Add to MetaCart
(Show Context)
In this paper we review the state of affairs in the area of approximation of largescale systems. We distinguish among three basic categories, namely the SVDbased, the Krylovbased and the SVDKrylovbased approximation methods. The first two were developed independently of each other and have distinct sets of attributes and drawbacks. The third approach seeks to combine the best attributes of the first two. Contents 1 Introduction and problem statement 1 2 Motivating Examples 3 3 Approximation methods 4 3.1 SVDbased approximation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 The Singular value decomposition: SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 Proper Orthogonal Decomposition (POD) methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 Approximation by balanced truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...