Results 1  10
of
44
Biconnectivity Approximations and Graph Carvings
, 1994
"... A spanning tree in a graph is the smallest connected spanning subgraph. Given a graph, how does one find the smallest (i.e., least number of edges) 2connected spanning subgraph (connectivity refers to both edge and vertex connectivity, if not specified) ? Unfortunately, the problem is known to be ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
A spanning tree in a graph is the smallest connected spanning subgraph. Given a graph, how does one find the smallest (i.e., least number of edges) 2connected spanning subgraph (connectivity refers to both edge and vertex connectivity, if not specified) ? Unfortunately, the problem is known to be NP hard. We consider the problem of finding a better approximation to the smallest 2connected subgraph, by an efficient algorithm. For 2edge connectivity our algorithm guarantees a solution that is no more than 3 2 times the optimal. For 2vertex connectivity our algorithm guarantees a solution that is no more than 5 3 times the optimal. The previous best approximation factor is 2 for each of these problems. The new algorithms (and their analyses) depend upon a structure called a carving of a graph, which is of independent interest. We show that approximating the optimal solution to within an additive constant is NP hard as well. We also consider the case where the graph has edge weigh...
Clique Partitions, Graph Compression and Speedingup Algorithms
 Journal of Computer and System Sciences
, 1991
"... We first consider the problem of partitioning the edges of a graph G into bipartite cliques such that the total order of the cliques is minimized, where the order of a clique is the number of vertices in it. It is shown that the problem is NPcomplete. We then prove the existence of a partition of s ..."
Abstract

Cited by 74 (3 self)
 Add to MetaCart
We first consider the problem of partitioning the edges of a graph G into bipartite cliques such that the total order of the cliques is minimized, where the order of a clique is the number of vertices in it. It is shown that the problem is NPcomplete. We then prove the existence of a partition of small total order in a sufficiently dense graph and devise an efficient algorithm to compute such a partition. It turns out that our algorithm exhibits a tradeoff between the total order of the partition and the running time. Next, we define the notion of a compression of a graph G and use the result on graph partitioning to efficiently compute an optimal compression for graphs of a given size. An interesting application of the graph compression result arises from the fact that several graph algorithms can be adapted to work with the compressed representation of the input graph, thereby improving the bound on their running times, particularly on dense graphs. This makes use of the tradeoff ...
Improved Approximation Algorithms for Uniform Connectivity Problems
 J. Algorithms
"... The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. Th ..."
Abstract

Cited by 71 (2 self)
 Add to MetaCart
The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. The following results are presented: 1. For the unweighted kedgeconnectivity problem an approximation algorithm that achieves a performance ratio of 1.85 is described. This is the first polynomialtime algorithm that achieves a constant less than 2, for all k. 2. For the weighted kvertexconnectivity problem, a constant factor approximation algorithm is given assuming that the edgeweights satisfy the triangle inequality. This is the first constant factor approximation algorithm for this problem. 3. For the case of biconnectivity, with no assumptions about the weights of the edges, an algorithm that achieves a factor asymptotically approaching 2 is described. This matches the previous best...
Finding the Hidden Path: Time Bounds for AllPairs Shortest Paths
, 1993
"... We investigate the allpairs shortest paths problem in weighted graphs. We present an algorithmthe Hidden Paths Algorithmthat finds these paths in time O(m* n+n² log n), where m is the number of edges participating in shortest paths. Our algorithm is a practical substitute for Dijkstra's ..."
Abstract

Cited by 64 (0 self)
 Add to MetaCart
We investigate the allpairs shortest paths problem in weighted graphs. We present an algorithmthe Hidden Paths Algorithmthat finds these paths in time O(m* n+n² log n), where m is the number of edges participating in shortest paths. Our algorithm is a practical substitute for Dijkstra's algorithm. We argue that m* is likely to be small in practice, since m* = O(n log n) with high probability for many probability distributions on edge weights. We also prove an Ω(mn) lower bound on the running time of any pathcomparison based algorithm for the allpairs shortest paths problem. Pathcomparison based algorithms form a natural class containing the Hidden Paths Algorithm, as well as the algorithms of Dijkstra and Floyd. Lastly, we consider generalized forms of the shortest paths problem, and show that many of the standard shortest paths algorithms are effective in this more general setting.
Approximation Algorithms for Finding Highly Connected Subgraphs
, 1996
"... Contents 1 Introduction 2 1.1 Outline of Chapter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2 EdgeConnectivity Problems 3 2.1 Weighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Unweighted EdgeConnectivity : : : : : ..."
Abstract

Cited by 60 (1 self)
 Add to MetaCart
Contents 1 Introduction 2 1.1 Outline of Chapter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2 EdgeConnectivity Problems 3 2.1 Weighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Unweighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2.1 2 EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2.2 EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 3 VertexConnectivity Problems 11 3.1 Weighted VertexConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11 3.2 Unweighted VertexConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12 3.2.1 2 VertexConnectivity : : : : : : : : : : : : : : : : :
Randomized Fully Dynamic Graph Algorithms with Polylogarithmic Time per Operation
 JOURNAL OF THE ACM
, 1999
"... This paper solves a longstanding open problem in fully dynamic algorithms: We present the first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed using a new d ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
This paper solves a longstanding open problem in fully dynamic algorithms: We present the first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed using a new dynamic technique which combines a novel graph decomposition with randomization. They are LasVegas type randomized algorithms which use simple data structures and have a small constant factor. Let n denote the number of nodes in the graph. For a sequence of \Omega\Gamma m 0 ) operations, where m 0 is the number of edges in the initial graph, the expected time for p updates is O(p log 3 n) 1 for connectivity and bipartiteness. The worstcase time for one query is O(log n= log log n). For the kedge witness problem ("Does the removal of k given edges disconnect the graph?") the expected time for p updates is O(p log 3 n) and expected time for q queries is O(qk log 3 n). Given a grap...
Randomized Dynamic Graph ALgorithms with Polylogarithmic Time per Operation
 PROC. 33RD ANNUAL SYMP. ON FOUNDATIONS OF COMPUTER SCIENCE
, 1995
"... ..."
A Faster Algorithm for Finding the Minimum Cut in a Directed Graph
 JOURNAL OF ALGORITHMS
, 1994
"... We consider the problem of finding the minimum capacity cut in a directed network G with n nodes. This problem has applications to network reliability and survivability and is useful in subroutines for other network optimization problems. One can use a maximum flow problem to find a minimum cut sepa ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
We consider the problem of finding the minimum capacity cut in a directed network G with n nodes. This problem has applications to network reliability and survivability and is useful in subroutines for other network optimization problems. One can use a maximum flow problem to find a minimum cut separating a designated source node s from a designated sink node t, and by varying the sink node one can find a minimum cut in G as a sequence of at most 2n 2 maximum flow problems. We then show how to reduce the running time of these 2n 2 maximum flow algorithms to the running time for solving a single maximum flow problem. The resulting running time is O(nm log(n 2 /m)) for finding the minimum cut in either a directed or an undirected network. © 1994 Academic Press, Inc. 1.
Finding Triconnected Components By Local Replacement
, 1993
"... . We present a parallel algorithm for finding triconnected components on a CRCW PRAM. The time complexity of our algorithm is O(log n) and the processortime product is O((m + n) log log n) where n is the number of vertices, and m is the number of edges of the input graph. Our algorithm, like other ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
. We present a parallel algorithm for finding triconnected components on a CRCW PRAM. The time complexity of our algorithm is O(log n) and the processortime product is O((m + n) log log n) where n is the number of vertices, and m is the number of edges of the input graph. Our algorithm, like other parallel algorithms for this problem, is based on open ear decomposition but it employs a new technique, local replacement, to improve the complexity. Only the need to use the subroutines for connected components and integer sorting, for which no optimal parallel algorithm that runs in O(log n) time is known, prevents our algorithm from achieving optimality. 1. Introduction. A connected graph G = (V; E) is kvertex connected if it has at least (k + 1) vertices and removal of any (k \Gamma 1) vertices leaves the graph connected. Designing efficient algorithms for determining the connectivity of graphs has been a subject of great interest in the last two decades. Applications of graph connect...
Maintaining Minimum Spanning Trees in Dynamic Graphs
 IN PROC. 24TH INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP
, 1997
"... We present the first fully dynamic algorithm for maintaining a minimum spanning tree in time o( # n) per operation. To be precise, the algorithm uses O(n 1/3 log n) amortized time per update operation. The algorithm is fairly simple and deterministic. An immediate consequence is the first fully dyna ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
We present the first fully dynamic algorithm for maintaining a minimum spanning tree in time o( # n) per operation. To be precise, the algorithm uses O(n 1/3 log n) amortized time per update operation. The algorithm is fairly simple and deterministic. An immediate consequence is the first fully dynamic deterministic algorithm for maintaining connectivity and, bipartiteness in amortized time O(n 1/3 log n) per update, with O(1) worst case time per query.