Results 1 
2 of
2
A Categorical Manifesto
 Mathematical Structures in Computer Science
, 1991
"... : This paper tries to explain why and how category theory is useful in computing science, by giving guidelines for applying seven basic categorical concepts: category, functor, natural transformation, limit, adjoint, colimit and comma category. Some examples, intuition, and references are given for ..."
Abstract

Cited by 99 (5 self)
 Add to MetaCart
: This paper tries to explain why and how category theory is useful in computing science, by giving guidelines for applying seven basic categorical concepts: category, functor, natural transformation, limit, adjoint, colimit and comma category. Some examples, intuition, and references are given for each concept, but completeness is not attempted. Some additional categorical concepts and some suggestions for further research are also mentioned. The paper concludes with some philosophical discussion. 0 Introduction This paper tries to explain why category theory is useful in computing science. The basic answer is that computing science is a young field that is growing rapidly, is poorly organised, and needs all the help it can get, and that category theory can provide help with at least the following: ffl Formulating definitions and theories. In computing science, it is often more difficult to formulate concepts and results than to give a proof. The seven guidelines of this paper can h...
"Clarifying the Nature of the Infinite": the development of metamathematics and proof theory
, 2001
"... We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how these considerations help frame our understanding of metamathematics and proof theory today.