Results 1  10
of
10
Making Data Structures Persistent
, 1989
"... This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any t ..."
Abstract

Cited by 247 (6 self)
 Add to MetaCart
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and effiient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O(1) space bounds for insertion and deletion.
Simple and efficient purely functional queues and deques
 JOURNAL OF FUNCTIONAL PROGRAMMING
, 1995
"... We present purely functional implementations of queues and doubleended queues (deques) requiring only O(1) time per operation in the worst case. Our algorithms are considerably simpler than previous designs with the same bounds. The inspiration for our approach is the incremental behavior of certai ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
We present purely functional implementations of queues and doubleended queues (deques) requiring only O(1) time per operation in the worst case. Our algorithms are considerably simpler than previous designs with the same bounds. The inspiration for our approach is the incremental behavior of certain functions on lazy lists.
Purely Functional Representations of Catenable Sorted Lists.
 In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
, 1996
"... The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structur ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structure can coexist indefinitely. Recent results illustrate the surprising power of pure functionality. One such result was the development of a representation of doubleended queues with catenation that supports all operations, including catenation, in worstcase constant time [19].
Confluently Persistent Deques via DataStructural Bootstrapping
 J. of Algorithms
, 1993
"... We introduce datastructural bootstrapping, a technique to design data structures recursively, and use it to design confluently persistent deques. Our data structure requires O(log 3 k) worstcase time and space per deletion, where k is the total number of deque operations, and constant worstcase t ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
We introduce datastructural bootstrapping, a technique to design data structures recursively, and use it to design confluently persistent deques. Our data structure requires O(log 3 k) worstcase time and space per deletion, where k is the total number of deque operations, and constant worstcase time and space for other operations. Further, the data structure allows a purely functional implementation, with no side effects. This improves a previous result of Driscoll, Sleator, and Tarjan. 1 An extended abstract of this paper was presented at the 4th ACMSIAM Symposium on Discrete Algorithms, 1993. 2 Supported by a Fannie and John Hertz Foundation fellowship, National Science Foundation Grant No. CCR8920505, and the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) under NSFSTC8809648. 3 Also affiliated with NEC Research Institute, 4 Independence Way, Princeton, NJ 08540. Research at Princeton University partially supported by the National Science Foundatio...
Purely Functional, RealTime Deques with Catenation
 Journal of the ACM
, 1999
"... We describe an efficient, purely functional implementation of deques with catenation. In addition to being an intriguing problem in its own right, finding a purely functional implementation of catenable deques is required to add certain sophisticated programming constructs to functional programming ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
We describe an efficient, purely functional implementation of deques with catenation. In addition to being an intriguing problem in its own right, finding a purely functional implementation of catenable deques is required to add certain sophisticated programming constructs to functional programming languages. Our solution has a worstcase running time of O(1) for each push, pop, inject, eject and catenation. The best previously known solution has an O(log k) time bound for the k deque operation. Our solution is not only faster but simpler. A key idea used in our result is an algorithmic technique related to the redundant digital representations used to avoid carry propagation in binary counting.
RealTime Deques, Multihead Turing Machines, and Purely Functional Programming
 In Conference on Functional Programming Languages and Computer Architecture
, 1993
"... We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [1 ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [14] and by Ponder, McGeer, and Ng [25], and refining results of Sarnak [26] and Hoogerwoord [18]. We term such a deque realtime, since its constant worstcase behavior might be useful in real time programs (assuming realtime garbage collection [3], etc.) Furthermore, we show that no restriction of the functional language is necessary, and that push and pop operations on previous versions of a deque can also be achieved in constant time. We present a purely functional implementation of real time deques and its complexity analysis. We then show that the implementation has some interesting implications, and can be used to give a realtime simulation of a multihead Turing machine in a purel...
Making Data Structures Confluently Persistent
, 2001
"... We address a longstanding open problem of [10, 9], and present a general transformation that transforms any pointer based data structure to be confluently persistent. Such transformations for fully persistent data structures are given in [10], greatly improving the performance compared to the naive ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We address a longstanding open problem of [10, 9], and present a general transformation that transforms any pointer based data structure to be confluently persistent. Such transformations for fully persistent data structures are given in [10], greatly improving the performance compared to the naive scheme of simply copying the inputs. Unlike fully persistent data structures, where both the naive scheme and the fully persistent scheme of [10] are feasible, we show that the naive scheme for confluently persistent data structures is itself infeasible (requires exponential space and time). Thus, prior to this paper there was no feasible method for implementing confluently persistent data structures at all. Our methods give an exponential reduction in space and time compared to the naive method, placing confluently persistent data structures in the realm of possibility.
A Probabilistic Approach to the Problem of Automatic Selection of Data Representations
 In Proceedings of the 1996 ACM SIGPLAN International Conference on Functional Programming
, 1996
"... The design and implementation of efficient aggregate data structures has been an important issue in functional programming. It is not clear how to select a good representation for an aggregate when access patterns to the aggregate are highly variant, or even unpredictable. Previous approaches rely o ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
The design and implementation of efficient aggregate data structures has been an important issue in functional programming. It is not clear how to select a good representation for an aggregate when access patterns to the aggregate are highly variant, or even unpredictable. Previous approaches rely on compiletime analyses or programmer annotations. These methods can be unreliable because they try to predict program behaviors before they are executed. We propose a probabilistic approach, which is based on Markov processes, for automatic selection of data representations. The selection is modeled as a random process moving in a graph with weighted edges. The proposed approach employs coin tossing at runtime to aid choosing suitable data representations. The transition probability function used by the coin tossing is constructed in a simple and common way from a measured cost function. We show that, under this setting, random selection of data representations can be quite effective. Th...
Lower And Upper Bounds For Incremental Algorithms
, 1992
"... An incremental algorithm (also called a dynamic update algorithm) updates the answer to some problem after an incremental change is made in the input. We examine methods for bounding the performance of such algorithms. First, quite general but relatively weak bounds are considered, along with a care ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
An incremental algorithm (also called a dynamic update algorithm) updates the answer to some problem after an incremental change is made in the input. We examine methods for bounding the performance of such algorithms. First, quite general but relatively weak bounds are considered, along with a careful examination of the conditions under which they hold. Next, a more powerful proof method, the Incremental Relative Lower Bound is presented, along with its application to a number of important problems. We then examine an alternative approach, deltaanalysis, which had been proposed previously, apply it to several new problems and show how it can be extended. For the specific problem of updating the transitive closure of an acyclic digraph, we present the first known incremental algorithm that is efficient in the deltaanalysis sense. Finally, we criti...
Speaking for the Trees: a New (Old) Approach to Languages and Syntax
, 2010
"... The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Prescott, Moss (M.S., Computer Science) ..."
Abstract
 Add to MetaCart
The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Prescott, Moss (M.S., Computer Science)