Results 1  10
of
16
Optimal Purely Functional Priority Queues
 JOURNAL OF FUNCTIONAL PROGRAMMING
, 1996
"... Brodal recently introduced the first implementation of imperative priority queues to support findMin, insert, and meld in O(1) worstcase time, and deleteMin in O(log n) worstcase time. These bounds are asymptotically optimal among all comparisonbased priority queues. In this paper, we adapt B ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
Brodal recently introduced the first implementation of imperative priority queues to support findMin, insert, and meld in O(1) worstcase time, and deleteMin in O(log n) worstcase time. These bounds are asymptotically optimal among all comparisonbased priority queues. In this paper, we adapt Brodal's data structure to a purely functional setting. In doing so, we both simplify the data structure and clarify its relationship to the binomial queues of Vuillemin, which support all four operations in O(log n) time. Specifically, we derive our implementation from binomial queues in three steps: first, we reduce the running time of insert to O(1) by eliminating the possibility of cascading links; second, we reduce the running time of findMin to O(1) by adding a global root to hold the minimum element; and finally, we reduce the running time of meld to O(1) by allowing priority queues to contain other priority queues. Each of these steps is expressed using MLstyle functors. The last transformation, known as datastructural bootstrapping, is an interesting application of higherorder functors and recursive structures.
Purely Functional Representations of Catenable Sorted Lists.
 In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
, 1996
"... The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structur ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structure can coexist indefinitely. Recent results illustrate the surprising power of pure functionality. One such result was the development of a representation of doubleended queues with catenation that supports all operations, including catenation, in worstcase constant time [19].
Purely Functional, RealTime Deques with Catenation
 Journal of the ACM
, 1999
"... We describe an efficient, purely functional implementation of deques with catenation. In addition to being an intriguing problem in its own right, finding a purely functional implementation of catenable deques is required to add certain sophisticated programming constructs to functional programming ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
(Show Context)
We describe an efficient, purely functional implementation of deques with catenation. In addition to being an intriguing problem in its own right, finding a purely functional implementation of catenable deques is required to add certain sophisticated programming constructs to functional programming languages. Our solution has a worstcase running time of O(1) for each push, pop, inject, eject and catenation. The best previously known solution has an O(log k) time bound for the k deque operation. Our solution is not only faster but simpler. A key idea used in our result is an algorithmic technique related to the redundant digital representations used to avoid carry propagation in binary counting.
RealTime Deques, Multihead Turing Machines, and Purely Functional Programming
 In Conference on Functional Programming Languages and Computer Architecture
, 1993
"... We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [1 ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
(Show Context)
We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [14] and by Ponder, McGeer, and Ng [25], and refining results of Sarnak [26] and Hoogerwoord [18]. We term such a deque realtime, since its constant worstcase behavior might be useful in real time programs (assuming realtime garbage collection [3], etc.) Furthermore, we show that no restriction of the functional language is necessary, and that push and pop operations on previous versions of a deque can also be achieved in constant time. We present a purely functional implementation of real time deques and its complexity analysis. We then show that the implementation has some interesting implications, and can be used to give a realtime simulation of a multihead Turing machine in a purel...
Simple Confluently Persistent Catenable Lists
 SIAM JOURNAL ON COMPUTING
, 1998
"... We consider the problem of maintaining persistent lists subject to concatenation and to insertions and deletions at both ends. Updates to a persistent data structure are nondestructive  each operation produces a new list incorporating the change, while keeping intact the list or lists to which it a ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
We consider the problem of maintaining persistent lists subject to concatenation and to insertions and deletions at both ends. Updates to a persistent data structure are nondestructive  each operation produces a new list incorporating the change, while keeping intact the list or lists to which it applies. Although general techniques exist for making data structures persistent, these techniques fail for structures that are subject to operations, such as catenation, that combine two or more versions. In this paper we develop a simple implementation of persistent doubleended queues with catenation that supports all deque operations in constant amortized time. Our implementation is functional if we allow memoization.
Making Data Structures Confluently Persistent
, 2001
"... We address a longstanding open problem of [10, 9], and present a general transformation that transforms any pointer based data structure to be confluently persistent. Such transformations for fully persistent data structures are given in [10], greatly improving the performance compared to the naive ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
(Show Context)
We address a longstanding open problem of [10, 9], and present a general transformation that transforms any pointer based data structure to be confluently persistent. Such transformations for fully persistent data structures are given in [10], greatly improving the performance compared to the naive scheme of simply copying the inputs. Unlike fully persistent data structures, where both the naive scheme and the fully persistent scheme of [10] are feasible, we show that the naive scheme for confluently persistent data structures is itself infeasible (requires exponential space and time). Thus, prior to this paper there was no feasible method for implementing confluently persistent data structures at all. Our methods give an exponential reduction in space and time compared to the naive method, placing confluently persistent data structures in the realm of possibility.
A Probabilistic Approach to the Problem of Automatic Selection of Data Representations
 In Proceedings of the 1996 ACM SIGPLAN International Conference on Functional Programming
, 1996
"... The design and implementation of efficient aggregate data structures has been an important issue in functional programming. It is not clear how to select a good representation for an aggregate when access patterns to the aggregate are highly variant, or even unpredictable. Previous approaches rely o ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
(Show Context)
The design and implementation of efficient aggregate data structures has been an important issue in functional programming. It is not clear how to select a good representation for an aggregate when access patterns to the aggregate are highly variant, or even unpredictable. Previous approaches rely on compiletime analyses or programmer annotations. These methods can be unreliable because they try to predict program behaviors before they are executed. We propose a probabilistic approach, which is based on Markov processes, for automatic selection of data representations. The selection is modeled as a random process moving in a graph with weighted edges. The proposed approach employs coin tossing at runtime to aid choosing suitable data representations. The transition probability function used by the coin tossing is constructed in a simple and common way from a measured cost function. We show that, under this setting, random selection of data representations can be quite effective. Th...
Amortization, Lazy Evaluation, and Persistence: Lists with Catenation via Lazy Linking
 Pages 646654 of: IEEE Symposium on Foundations of Computer Science
, 1995
"... Amortization has been underutilized in the design of persistent data structures, largely because traditional accounting schemes break down in a persistent setting. Such schemes depend on saving "credits" for future use, but a persistent data structure may have multiple "futures", ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
(Show Context)
Amortization has been underutilized in the design of persistent data structures, largely because traditional accounting schemes break down in a persistent setting. Such schemes depend on saving "credits" for future use, but a persistent data structure may have multiple "futures", each competing for the same credits. We describe how lazy evaluation can often remedy this problem, yielding persistent data structures with good amortized efficiency. In fact, such data structures can be implemented purely functionally in any functional language supporting lazy evaluation. As an example of this technique, we present a purely functional (and therefore persistent) implementation of lists that simultaneously support catenation and all other usual list primitives in constant amortized time. This data structure is much simpler than the only existing data structure with comparable bounds, the recently discovered catenable lists of Kaplan and Tarjan, which support all operations in constant worstca...
Jgraph  A Filter for Plotting Graphs in PostScript
 IN PROCEEDINGS OF 1993 WINTER USENIX
, 1993
"... Jgraph is a noninteractive filter for plotting twodimensional scatter, line, and bar graphs in PostScript. It has also been used as a generalpurpose drawing utility. Jgraph's strengths lie in its portability, flexibility, and integration into the UNIX environment. Jgraph is free software ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Jgraph is a noninteractive filter for plotting twodimensional scatter, line, and bar graphs in PostScript. It has also been used as a generalpurpose drawing utility. Jgraph's strengths lie in its portability, flexibility, and integration into the UNIX environment. Jgraph is free software available on netlib or by anonymous ftp.
DataStructural Bootstrapping And Catenable Deques
, 1993
"... The list is a fundamental data structure. It stores a linearly ordered collection of elements and allows access only to the front and rear elements of the list. Catenation can be applied to lists, unifying the rear of one list with the front of another. Absent other requirements, the basic list oper ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
The list is a fundamental data structure. It stores a linearly ordered collection of elements and allows access only to the front and rear elements of the list. Catenation can be applied to lists, unifying the rear of one list with the front of another. Absent other requirements, the basic list operations, including catenation, have straightforward implementations. If the list has certain secondary properties, however, the operations, particularly catenation, become more difficult. Nondestructive lists