Results 1 
3 of
3
Fair testing
 Concur ’95: Concurrency Theory, volume 962 of Lecture Notes in Computer Science
, 1995
"... In this paper we present a solution to the longstanding problem of characterising the coarsest livenesspreserving precongruence with respect to a full (TCSPinspired) process algebra. In fact, we present two distinct characterisations, which give rise to the same relation: an operational one base ..."
Abstract

Cited by 84 (1 self)
 Add to MetaCart
In this paper we present a solution to the longstanding problem of characterising the coarsest livenesspreserving precongruence with respect to a full (TCSPinspired) process algebra. In fact, we present two distinct characterisations, which give rise to the same relation: an operational one based on a De NicolaHennessylike testing modality which we call shouldtesting, and a denotational one based on a refined notion of failures. One of the distinguishing characteristics of the shouldtesting precongruence is that it abstracts from divergences in the same way as Milner’s observation congruence, and as a consequence is strictly coarser than observation congruence. In other words, shouldtesting has a builtin fairness assumption. This is in itself a property long soughtafter; it is in notable contrast to the wellknown musttesting of De Nicola and Hennessy (denotationally characterised by a combination of failures and divergences), which treats divergence as catrastrophic and hence is incompatible with observation congruence. Due to these characteristics, shouldtesting supports modular reasoning and allows to use the proof techniques of observation congruence, but also supports additional laws and techniques.
Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation
, 1999
"... This paper studies testing based on labelled transition systems, presenting two test generation algorithms with their corresponding implementation relations. The first algorithm assumes that implementations communicate with their environment via symmetric, synchronous interactions. It is based on th ..."
Abstract
 Add to MetaCart
This paper studies testing based on labelled transition systems, presenting two test generation algorithms with their corresponding implementation relations. The first algorithm assumes that implementations communicate with their environment via symmetric, synchronous interactions. It is based on the theory of testing equivalence and preorder, as is most of the testing theory for labelled transition systems, and it is found in the literature in some slightly different variations. The second algorithm is based on the assumption that implementations communicate with their environment via inputs and outputs. Such implementations are formalized by restricting the class of labelled transition systems to those systems that can always accept input actions. For these implementations a testing theory is developed, analogous to the theory of testing equivalence and preorder. It consists of implementation relations formalizing the notion of conformance of these implementations with respect to labelled transition system specifications, test cases and test suites, test execution, the notion of passing a test suite, and the test generation algorithm, which is proved to produce sound test suites for one of the implementation relations. 1