Results 1  10
of
70
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 579 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Clustering of Time Series Subsequences is Meaningless: Implications for Past and Future Research
 In Proc. of the 3rd IEEE International Conference on Data Mining
, 2003
"... Time series data is perhaps the most frequently encountered type of data examined by the data mining community. Clustering is perhaps the most frequently used data mining algorithm, being useful in it’s own right as an exploratory technique, and also as a subroutine in more complex data mining algor ..."
Abstract

Cited by 79 (14 self)
 Add to MetaCart
Time series data is perhaps the most frequently encountered type of data examined by the data mining community. Clustering is perhaps the most frequently used data mining algorithm, being useful in it’s own right as an exploratory technique, and also as a subroutine in more complex data mining algorithms such as rule discovery, indexing, summarization, anomaly detection, and classification. Given these two facts, it is hardly surprising that time series clustering has attracted much attention. The data to be clustered can be in one of two formats: many individual time series, or a single time series, from which individual time series are extracted with a sliding window. Given the recent explosion of interest in streaming data and online algorithms, the latter case has received much attention. In this work we make a surprising claim. Clustering of streaming time series is completely meaningless. More concretely, clusters extracted from streaming time series are forced to obey a certain constraint that is pathologically unlikely to be satisfied by any dataset, and because of this, the clusters extracted by any clustering algorithm are essentially random. While this constraint can be intuitively demonstrated with a simple illustration and is simple to prove, it has never appeared in the literature. We can justify calling our claim surprising, since it invalidates the contribution of dozens of previously published papers. We will justify our claim with a theorem, illustrative examples, and a comprehensive set of experiments on reimplementations of previous work. Although the primary contribution of our work is to draw attention to the fact that an apparent solution to an important problem is incorrect and should no longer be used, we also introduce a novel method which, based on the concept of time series motifs, is able to meaningfully cluster some streaming time series datasets.
Making Timeseries Classification More Accurate Using Learned Constraints
 In proc. of SDM Int’l Conf
, 2004
"... It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly miti ..."
Abstract

Cited by 60 (18 self)
 Add to MetaCart
It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly mitigates DTWs demanding CPU time has sparked a flurry of research activity. However, the technique and its many extensions still only allow DTW to be applied to moderately large datasets. In addition, almost all of the research on DTW has focused exclusively on speeding up its calculation; there has been little work done on improving its accuracy. In this work, we target the accuracy aspect of DTW performance and introduce a new framework that learns arbitrary constraints on the warping path of the DTW calculation. Apart from improving the accuracy of classification, our technique as a side effect speeds up DTW by a wide margin as well. We show the utility of our approach on datasets from diverse domains and demonstrate significant gains in accuracy and efficiency.
Timeseries Bitmaps: A Practical Visualization Tool for working with Large Time Series Databases
 In proceedings of SIAM International Conference on Data Mining (SDM '05
"... The increasing interest in time series data mining in the last decade has resulted in the introduction of a variety of similarity measures, representations, and algorithms. Surprisingly, this massive research effort has had little impact on real world applications. Real world practitioners who work ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
The increasing interest in time series data mining in the last decade has resulted in the introduction of a variety of similarity measures, representations, and algorithms. Surprisingly, this massive research effort has had little impact on real world applications. Real world practitioners who work with time series on a daily basis rarely take advantage of the wealth of tools that the data mining community has made available. In this work, we attempt to address this problem by introducing a simple parameterlight tool that allows users to efficiently navigate through large collections of time series. Our system has the unique advantage that it can be embedded directly into any standard graphical user interfaces, such as Microsoft Windows, thus making deployment easier. Our approach extracts features from a time series of arbitrary length and uses information about the relative frequency of its features to color a bitmap in a principled way. By visualizing the similarities and differences within a collection of bitmaps, a user can quickly discover clusters, anomalies, and other regularities within their data collection. We demonstrate the utility of our approach with a set of comprehensive experiments on real datasets from a variety of domains.
Gaussian mixture clustering and imputation of microarray data
 Bioinformatics
, 2004
"... Motivation: In microarray experiments, missing entries arise from blemishes on the chips. In largescale studies, virtually every chip contains some missing entries and more than 90% of the genes are affected. Many analysis methods require a full set of data. Either those genes with missing entries ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
Motivation: In microarray experiments, missing entries arise from blemishes on the chips. In largescale studies, virtually every chip contains some missing entries and more than 90% of the genes are affected. Many analysis methods require a full set of data. Either those genes with missing entries are excluded, or the missing entries are filled with estimates prior to the analyses.This study compares methods of missing value estimation. Results: Two evaluation metrics of imputation accuracy are employed. First, the root mean squared error measures the difference between the true values and the imputed values. Second, the number of misclustered genes measures the difference between clustering with true values and that with imputed values; it examines the bias introduced by imputation to clustering. The Gaussian mixture clustering with model averaging imputation is superior to all other imputation methods, according to both evaluation metrics, on both timeseries (correlated) and nontime series (uncorrelated) data sets. Availability: Matlab code is available on request from the authors. Contact:
Clustering of Unevenly Sampled Gene Expression TimeSeries Data
, 2003
"... Motivation: Time course measurements are becoming a common type of experiment in the use of microrarrays. Conventional clustering algorithms based on the Euclidean distance or the Pearson correlation coefficient are not able to include temporal information in the distance metric. The temporal order ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
Motivation: Time course measurements are becoming a common type of experiment in the use of microrarrays. Conventional clustering algorithms based on the Euclidean distance or the Pearson correlation coefficient are not able to include temporal information in the distance metric. The temporal order of the data and the varying length of sampling intervals are important and should be considered in clustering timeseries. However, the shortness of gene expression timeseries data limits the use of conventional statistical models and techniques for timeseries analysis. To address this problem, this paper proposes the Fuzzy Short TimeSeries (FSTS) clustering algorithm, which is able to cluster profiles based on the similarity of their relative change of expression level and the corresponding temporal information. One of the major advantages of fuzzy clustering is that genes can belong to more than one group, revealing distinctive features of each gene's function and regulation. Results:
CATS: Clustering after transformation and smoothing
 Journal of the American Statistical Association
, 2005
"... technique for nonparametrically estimating and clustering a large number of curves. Our motivating example is a genetic microarray experiment but the method is very general. The method includes: transformation and smoothing multiple curves, multiple nonparametric testing for trends, clustering curve ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
technique for nonparametrically estimating and clustering a large number of curves. Our motivating example is a genetic microarray experiment but the method is very general. The method includes: transformation and smoothing multiple curves, multiple nonparametric testing for trends, clustering curves with similar shape, and nonparametrically inferring the misclustering rate.
Clustering of streaming time series is meaningless
 In Proc. of the SIGMOD workshop in Data Mining and Knowledge Discovery
, 2003
"... Time series data is perhaps the most frequently encountered type of data examined by the data mining community. Clustering is perhaps the most frequently used data mining algorithm, being useful in it’s own right as an exploratory technique, and also as a subroutine in more complex data mining algor ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Time series data is perhaps the most frequently encountered type of data examined by the data mining community. Clustering is perhaps the most frequently used data mining algorithm, being useful in it’s own right as an exploratory technique, and also as a subroutine in more complex data mining algorithms such as rule discovery, indexing, summarization, anomaly detection, and classification. Given these two facts, it is hardly surprising that time series clustering has attracted much attention. The data to be clustered can be in one of two formats: many individual time series, or a single time series, from which individual time series are extracted with a sliding window. Given the recent explosion of interest in streaming data and online algorithms, the latter case has received much attention. In this work we make a surprising claim. Clustering of streaming time series is completely meaningless. More concretely, clusters extracted from streaming time series are forced to obey a certain constraint that is pathologically unlikely to be satisfied by any dataset, and because of this, the clusters extracted by any clustering algorithm are essentially random. While this constraint can be intuitively demonstrated with a simple illustration and is simple to prove, it has never appeared in the literature. We can justify calling our claim surprising, since it invalidates the contribution of dozens of previously published papers. We will justify our claim with a theorem, illustrative examples, and a comprehensive set of experiments on reimplementations of previous work. Although the primary contribution of our work is to draw attention to the fact that an apparent solution to an important problem is incorrect and should no longer be used, we also introduce a novel method which, based on the concept of time series motifs, is able to meaningfully cluster some streaming time series datasets.
Clustering time series from mixture polynomial models with discretised data
 In Proceedings of the second Australasian Data Mining Workshop
, 2003
"... ..."