Results 1  10
of
91
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 828 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Fast Contact Force Computation for Nonpenetrating Rigid Bodies
, 1994
"... A new algorithm for computing contact forces between solid objects with friction is presented. The algorithm allows a mix of contact points with static and dynamic friction. In contrast to previous approaches, the problem of computing contact forces is not transformed into an optimization problem. B ..."
Abstract

Cited by 276 (7 self)
 Add to MetaCart
A new algorithm for computing contact forces between solid objects with friction is presented. The algorithm allows a mix of contact points with static and dynamic friction. In contrast to previous approaches, the problem of computing contact forces is not transformed into an optimization problem. Because of this, the need for sophisticated optimization software packages is eliminated. For both systems with and without friction, the algorithm has proven to be considerably faster, simpler, and more reliable than previous approaches to the problem. In particular, implementation of the algorithm by nonspecialists in numerical programming is quite feasible.
CUTE: Constrained and unconstrained testing environment
, 1993
"... The purpose of this paper is to discuss the scope and functionality of a versatile environment for testing small and largescale nonlinear optimization algorithms. Although many of these facilities were originally produced by the authors in conjunction with the software package LANCELOT, we belie ..."
Abstract

Cited by 186 (3 self)
 Add to MetaCart
The purpose of this paper is to discuss the scope and functionality of a versatile environment for testing small and largescale nonlinear optimization algorithms. Although many of these facilities were originally produced by the authors in conjunction with the software package LANCELOT, we believe that they will be useful in their own right and should be available to researchers for their development of optimization software. The tools are available by anonymous ftp from a number of sources and may, in many cases, be installed automatically. The scope of a major collection of test problems written in the standard input format (SIF) used by the LANCELOT software package is described. Recognising that most software was not written with the SIF in mind, we provide tools to assist in building an interface between this input format and other optimization packages. These tools already provide a link between the SIF and an number of existing packages, including MINOS and OSL. In ad...
Optimal operation of multi reservoir systems: stateoftheart review
 J. Water Resour. Plann. Manag
, 2004
"... Abstract: With construction of new largescale water storage projects on the wane in the U.S. and other developed countries, attention must focus on improving the operational effectiveness and efficiency of existing reservoir systems for maximizing the beneficial uses of these projects. Optimal coor ..."
Abstract

Cited by 93 (0 self)
 Add to MetaCart
(Show Context)
Abstract: With construction of new largescale water storage projects on the wane in the U.S. and other developed countries, attention must focus on improving the operational effectiveness and efficiency of existing reservoir systems for maximizing the beneficial uses of these projects. Optimal coordination of the many facets of reservoir systems requires the assistance of computer modeling tools to provide information for rational management and operational decisions. The purpose of this review is to assess the stateoftheart in optimization of reservoir system management and operations and consider future directions for additional research and application. Optimization methods designed to prevail over the highdimensional, dynamic, nonlinear, and stochastic characteristics of reservoir systems are scrutinized, as well as extensions into multiobjective optimization. Application of heuristic programming methods using evolutionary and genetic algorithms are described, along with application of neural networks and fuzzy rulebased systems for inferring reservoir system operating rules.
On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs
, 1994
"... A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two different ways: by decomposing the problem into scenarios or decomposing it into nodes corresponding ..."
Abstract

Cited by 60 (4 self)
 Add to MetaCart
A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two different ways: by decomposing the problem into scenarios or decomposing it into nodes corresponding to stages. In both cases the method has favorable convergence properties and a structure which makes it convenient for parallel computing environments. Keywords: Stochastic Programming, Decomposition, Augmented Lagrangian, Jacobi Method, Parallel Computation. iii iv On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs Andrzej Ruszczy'nski 1 Introduction Multistage stochastic optimization problems belong to the most difficult problems of mathematical programming. Their size grows very quickly with the number of stages and with the number of events (scenarios) incorporated into the model. Although problems of this type occur frequently in applications (like,...
Regularized Principal Manifolds
 In Computational Learning Theory: 4th European Conference
, 2001
"... Many settings of unsupervised learning can be viewed as quantization problems  the minimization ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
Many settings of unsupervised learning can be viewed as quantization problems  the minimization
Symmetric indefinite systems for interior point methods
, 1993
"... We present a unified framework for solving linear and convex quadratic programs via interior point methods. At each iteration, this method solves an indefinite system whose matrix is [_~2 A v] instead of reducing to obtain the usual AD2A v system. This methodology affords two advantages: (1) it avo ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
We present a unified framework for solving linear and convex quadratic programs via interior point methods. At each iteration, this method solves an indefinite system whose matrix is [_~2 A v] instead of reducing to obtain the usual AD2A v system. This methodology affords two advantages: (1) it avoids the fill created by explicitly forming the product AD2A v when A has dense columns; and (2) it can easily be used to solve nonseparable quadratic programs since it requires only that D be symmetric. We also present a procedure for converting nonseparable quadratic programs to separable ones which yields computational savings when the matrix of quadratic oefficients is dense.
A FortrantoC converter
 AT&T Bell Laboratories
, 1992
"... We describe f 2c, a program that translates Fortran 77 into C or C++. F 2c lets one portably mix C and Fortran and makes a large body of welltested Fortran source code available to C environments. 1. ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
(Show Context)
We describe f 2c, a program that translates Fortran 77 into C or C++. F 2c lets one portably mix C and Fortran and makes a large body of welltested Fortran source code available to C environments. 1.
Retrospective on Optimization
 25 TH YEAR ISSUE ON COMPUTERS AND CHEMICAL ENGINEERING
"... In this paper we provide a general classification of mathematical optimization problems, followed by a matrix of applications that shows the areas in which these problems have been typically applied in process systems engineering. We then provide a review of solution methods of the major types of op ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
In this paper we provide a general classification of mathematical optimization problems, followed by a matrix of applications that shows the areas in which these problems have been typically applied in process systems engineering. We then provide a review of solution methods of the major types of optimization problems for continuous and discrete variable optimization, particularly nonlinear and mixedinteger nonlinear programming. We also review their extensions to dynamic optimization and optimization under uncertainty. While these areas are still subject to significant research efforts, the emphasis in this paper is on major developments that have taken place over the last twenty five years.
A PRACTICAL ANTICYCLING PROCEDURE FOR LINEARLY CONSTRAINED OPTIMIZATION
, 1989
"... A procedure is described for preventing cycling in activeset methods for linearly constrained optimization, including the simplex method. The key ideas are a limited acceptance ofinfeasibilities in all variables, and maintenance of a "working" feasibility tolerance that increases over a l ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
A procedure is described for preventing cycling in activeset methods for linearly constrained optimization, including the simplex method. The key ideas are a limited acceptance ofinfeasibilities in all variables, and maintenance of a "working" feasibility tolerance that increases over a long sequence of iterations. The additional work per iteration is nominal, and "stalling" cannot occur with exact arithmetic. The method appears to be reliable, based on computational results for the first 53 linear programming problems in the Netlib set.