Results 1  10
of
204
Composing Schema Mappings: SecondOrder Dependencies to the Rescue
 In PODS
, 2004
"... A schema mapping is a specification that describes how data structured under one schema (the source schema) is to be transformed into data structured under a di#erent schema (the target schema). Schema mappings play a key role in numerous areas of database systems, including database design, informa ..."
Abstract

Cited by 134 (20 self)
 Add to MetaCart
A schema mapping is a specification that describes how data structured under one schema (the source schema) is to be transformed into data structured under a di#erent schema (the target schema). Schema mappings play a key role in numerous areas of database systems, including database design, information integration, and model management. A fundamental problem in this context is composing schema mappings: given two successive schema mappings, derive a schema mapping between the source schema of the first and the target schema of the second that has the same e#ect as applying successively the two schema mappings.
ConjunctiveQuery Containment and Constraint Satisfaction
 Journal of Computer and System Sciences
, 1998
"... Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in c ..."
Abstract

Cited by 132 (13 self)
 Add to MetaCart
Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in common? Our main conceptual contribution in this paper is to point out that, despite their very different formulation, conjunctivequery containment and constraint satisfaction are essentially the same problem. The reason is that they can be recast as the following fundamental algebraic problem: given two finite relational structures A and B, is there a homomorphism h : A ! B? As formulated above, the homomorphism problem is uniform in the sense that both relational structures A and B are part of the input. By fixing the structure B, one obtains the following nonuniform problem: given a finite relational structure A, is there a homomorphism h : A ! B? In general, nonuniform tractability results do not uniformize. Thus, it is natural to ask: which tractable cases of nonuniform tractability results for constraint satisfaction and conjunctivequery containment do uniformize? Our main technical contribution in this paper is to show that several cases of tractable nonuniform constraint satisfaction problems do indeed uniformize. We exhibit three nonuniform tractability results that uniformize and, thus, give rise to polynomialtime solvable cases of constraint satisfaction and conjunctivequery containment.
Classifying the complexity of constraints using finite algebras
 SIAM Journal on Computing
, 2005
"... Abstract. Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. Here we show that any set of relations used to specify th ..."
Abstract

Cited by 117 (23 self)
 Add to MetaCart
Abstract. Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. Here we show that any set of relations used to specify the allowed forms of constraints can be associated with a finite universal algebra and we explore how the computational complexity of the corresponding constraint satisfaction problem is connected to the properties of this algebra. Hence, we completely translate the problem of classifying the complexity of restricted constraint satisfaction problems into the language of universal algebra. We introduce a notion of “tractable algebra, ” and investigate how the tractability of an algebra relates to the tractability of the smaller algebras which may be derived from it, including its subalgebras and homomorphic images. This allows us to reduce significantly the types of algebras which need to be classified. Using our results we also show that if the decision problem associated with a given collection of constraint types can be solved efficiently, then so can the corresponding search problem. We then classify all finite strictly simple surjective algebras with respect to tractability, obtaining a dichotomy theorem which generalizes Schaefer’s dichotomy for the generalized satisfiability problem. Finally, we suggest a possible general algebraic criterion for distinguishing the tractable and intractable cases of the constraint satisfaction problem.
On the algebraic structure of combinatorial problems
 THEORETICAL COMPUTER SCIENCE
, 1998
"... ..."
The Approximability of Constraint Satisfaction Problems
 SIAM J. Comput
, 2001
"... We study optimization problems that may be expressed as "Boolean constraint satisfaction problems." An instance of a Boolean constraint satisfaction problem is given by m constraints applied to n Boolean variables. Di#erent computational problems arise from constraint satisfaction problems depending ..."
Abstract

Cited by 68 (2 self)
 Add to MetaCart
We study optimization problems that may be expressed as "Boolean constraint satisfaction problems." An instance of a Boolean constraint satisfaction problem is given by m constraints applied to n Boolean variables. Di#erent computational problems arise from constraint satisfaction problems depending on the nature of the "underlying" constraints as well as on the goal of the optimization task. Here we consider four possible goals: Max CSP (Min CSP) is the class of problems where the goal is to find an assignment maximizing the number of satisfied constraints (minimizing the number of unsatisfied constraints). Max Ones (Min Ones) is the class of optimization problems where the goal is to find an assignment satisfying all constraints with maximum (minimum) number of variables set to 1. Each class consists of infinitely many problems and a problem within a class is specified by a finite collection of finite Boolean functions that describe the possible constraints that may be used.
On the fixed parameter complexity of graph enumeration problems definable in monadic secondorder logic
, 2001
"... ..."
Constraint Satisfaction Problems And Finite Algebras
, 1999
"... Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. In this paper we show that any restricted set of constraint types c ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. In this paper we show that any restricted set of constraint types can be associated with a finite universal algebra. We explore how the computational complexity of a restricted constraint satisfaction problem is connected to properties of the corresponding algebra. For this, we introduce a notion of `tractable algebra' and study how the tractability of an algebra relates to the tractability of its smaller derived algebras, including its subalgebras and homomorphic images. This allows us to significantly reduce the types of algebras which need to be investigated. Using these results we exhibit a common structural property of all known intractable constraint satisfaction problems. Finally, we classify all finite strictly simple surjective algebras wit...
Viewbased query processing and constraint satisfaction
 IN PROC. OF THE 15TH IEEE SYMP. ON LOGIC IN COMPUTER SCIENCE (LICS 2000
, 2000
"... Viewbased query processing requires to answer a query posed to a database only on the basis of the information on a set of views, which are again queries over the same database. This problem is relevant in many aspects of database management, and has been addressed by means of two basic approaches, ..."
Abstract

Cited by 45 (28 self)
 Add to MetaCart
Viewbased query processing requires to answer a query posed to a database only on the basis of the information on a set of views, which are again queries over the same database. This problem is relevant in many aspects of database management, and has been addressed by means of two basic approaches, namely, query rewriting and query answering. In the former approach, one tries to compute a rewriting of the query in terms of the views, whereas in the latter, one aims at directly answering the query based on the view extensions. We study viewbased query processing for the case of regularpath queries, which are the basic querying mechanisms for the emergent field of semistructured data. Based on recent results, we first show that a rewriting is in general a coNP function wrt to the size of view extensions. Hence, the problem arises of characterizing which instances of the problem admit a rewriting that is PTIME. A second contribution of the work is to establish a tight connection between viewbased query answering and constraintsatisfaction problems, which allows us to show that the above characterization is going to be difficult. As a third contribution of our work, we present two methods for computing PTIME rewritings of specific forms. The first method, which is based on the established connection with constraintsatisfaction problems, gives us rewritings expressed in Datalog with a fixed number of variables. The second method, based on automatatheoretic techniques, gives us rewritings that are formulated as unions of conjunctive regularpath queries with a fixed number of variables.
Constraint Satisfaction, Bounded Treewidth, and FiniteVariable Logics
, 2002
"... We systematically investigate the connections between constraint satisfaction problems, structures of bounded treewidth, and definability in logics with a finite number of variables. We first show that constraint satisfaction problems on inputs of treewidth less than k are definable using Datalog ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
We systematically investigate the connections between constraint satisfaction problems, structures of bounded treewidth, and definability in logics with a finite number of variables. We first show that constraint satisfaction problems on inputs of treewidth less than k are definable using Datalog programs with at most k variables; this provides a new explanation for the tractability of these classes of problems. After this, we investigate constraint satisfaction on inputs that are homomorphically equivalent to structures of bounded treewidth.
The Complexity Of Maximal Constraint Languages
, 2001
"... Many combinatorial search problems can be expressed as "constraint satisfaction problems" using an appropriate "constraint language", that is, a set of relations over some fixed finite set of values. It is wellknown that there is a tradeoff between the expressive power of a constraint language and ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
Many combinatorial search problems can be expressed as "constraint satisfaction problems" using an appropriate "constraint language", that is, a set of relations over some fixed finite set of values. It is wellknown that there is a tradeoff between the expressive power of a constraint language and the complexity of the problems it can express. In the present paper we systematically study the complexity of all maximal constraint languages, that is, languages whose expressive power is just weaker than that of the language of all constraints. Using the algebraic invariance properties of constraints, we exhibit a strong necessary condition for tractability of such a constraint language. Moreover, we show that, at least for small sets of values, this condition is also sufficient.