Results 1 
1 of
1
Algorithms for dense graphs and networks on the random access computer
 ALGORITHMICA
, 1996
"... We improve upon the running time of several graph and network algorithms when applied to dense graphs. In particular, we show how to compute on a machine with word size L = f2 (log n) a maximal matching in an nvertex bipartite graph in time O (n 2 + n2"5/~.) = O (n2"5/log n), how to compute the t ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
We improve upon the running time of several graph and network algorithms when applied to dense graphs. In particular, we show how to compute on a machine with word size L = f2 (log n) a maximal matching in an nvertex bipartite graph in time O (n 2 + n2"5/~.) = O (n2"5/log n), how to compute the transitive closure of a digraph with n vertices and m edges in time O(n 2 + nm/,k), how to solve the uncapacitated transportation problem with integer costs in the range [0..C] and integer demands in the range [U..U] in time O ((n 3 (log log / log n) 1/2 + n 2 log U) log nC), and how to solve the assignment problem with integer costs in the range [0..C] in time O(n 2"5 log nC/(logn/loglog n)l/4). Assuming a suitably compressed input, we also show how to do depthfirst and breadthfirst search and how to compute strongly connected components and biconnected components in time O(n~. + n2/L), and how to solve the single source shortestpath problem with integer costs in the range [0..C] in time O(n²(log C)/log n). For the transitive closure algorithm we also report on the experiences with an implementation.