Results 1  10
of
11
SetTheoretical and Other Elementary Models of the lambdacalculus
 Theoretical Computer Science
, 1993
"... Part 1 of this paper is the previously unpublished 1972 memorandum [43], with editorial changes and some minor corrections. Part 2 presents what happened next, together with some further development of the material. The first part begins with an elementary settheoretical model of the ficalculus. F ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
Part 1 of this paper is the previously unpublished 1972 memorandum [43], with editorial changes and some minor corrections. Part 2 presents what happened next, together with some further development of the material. The first part begins with an elementary settheoretical model of the ficalculus. Functions are modeled in a similar way to that normally employed in set theory, by their graphs; difficulties are caused in this enterprise by the axiom of foundation. Next, based on that model, a model of the fijcalculus is constructed by means of a natural deduction method. Finally, a theorem is proved giving some general properties of those nontrivial models of the fijcalculus which are continuous complete lattices. The second part begins with a brief discussion of models of the calculus in set theories with antifoundation axioms. Next the model of the fi calculus of Part 1 and also the closely relatedbut different!models of Scott [53, 54] and of Engeler [21, 22] are reviewed....
Prelogical Relations
, 1999
"... this paper but which have some intriguing connections to some of our results and techniques, are [32] and [20]. We believe that the concept of prelogical relation would have a beneficial impact on the presentation and understanding of their results ..."
Abstract

Cited by 25 (5 self)
 Add to MetaCart
this paper but which have some intriguing connections to some of our results and techniques, are [32] and [20]. We believe that the concept of prelogical relation would have a beneficial impact on the presentation and understanding of their results
Filter Models and Easy Terms
, 2001
"... We illustrate the use of intersection types as a tool for synthesizing models which exhibit special purpose features. We focus on semantical proofs of easiness. This allows us to prove that the class of theories induced by graph models is strictly included in the class of theories induced by n ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
We illustrate the use of intersection types as a tool for synthesizing models which exhibit special purpose features. We focus on semantical proofs of easiness. This allows us to prove that the class of theories induced by graph models is strictly included in the class of theories induced by nonextensional lter models.
Simple easy terms
 Intersection Types and Related Systems, volume 70 of Electronic Notes in Computer Science
, 2002
"... Dipartimento di Informatica Universit`a di Venezia ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
(Show Context)
Dipartimento di Informatica Universit`a di Venezia
The Minimal Graph Model of Lambda Calculus
"... A longstanding open problem in lambdacalculus, raised by G.Plotkin, is whether there exists a continuous model of the untyped lambdacalculus whose theory is exactly the betatheory or the betaetatheory. A related question, raised recently by C.Berline, is whether, given a class of lambdamode ..."
Abstract

Cited by 11 (10 self)
 Add to MetaCart
(Show Context)
A longstanding open problem in lambdacalculus, raised by G.Plotkin, is whether there exists a continuous model of the untyped lambdacalculus whose theory is exactly the betatheory or the betaetatheory. A related question, raised recently by C.Berline, is whether, given a class of lambdamodels, there is a minimal equational theory represented by it.
Parametric and TypeDependent Polymorphism
, 1995
"... Data Types, though, as Reynolds stresses, is not perfectly suited for higher type or higher order systems and, thus, he proposes a "relational" treatment of invariance: computations do not depend on types in the sense that they are "invariant" w.r.t. arbitrary relations on types ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Data Types, though, as Reynolds stresses, is not perfectly suited for higher type or higher order systems and, thus, he proposes a "relational" treatment of invariance: computations do not depend on types in the sense that they are "invariant" w.r.t. arbitrary relations on types and between types. Reynolds's approach set the basis for most of the current work on parametricity, as we will review below (.3). Some twelve years earlier, Girard had given just a simple hint towards another understanding of the properties of "computing with types". In [Gir71], it is shown, as a side remark, that, given a type A, if one defines a term J A such that, for any type B, J A B reduces to 1, if A = B, and reduces to 0, if A ¹ B, then F + J A does not normalize. In particular, then, J A is not definable in F. This remark on how terms may depend on types is inspired by a view of types which is quite different from Reynolds's. System F was born as the theory of proofs of second order intuitionis...
A settheoretical definition of application
 University of Edinburgh
, 1972
"... [41], with editorial changes and some minor corrections. Part 2 presents what happened next, together with some further development of the material. The first part begins with an elementary settheoretical model of the λβcalculus. Functions are modelled in a similar way to that normally employed in ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
(Show Context)
[41], with editorial changes and some minor corrections. Part 2 presents what happened next, together with some further development of the material. The first part begins with an elementary settheoretical model of the λβcalculus. Functions are modelled in a similar way to that normally employed in set theory, by their graphs; difficulties are caused in this enterprise by the axiom of foundation. Next, based on that model, a model of the λβηcalculus is constructed by means of a natural deduction method. Finally, a theorem is proved giving some general properties of those nontrivial models of the λβηcalculus which are continuous complete lattices. In the second part we begin with a brief discussion of models of the λcalculus in set theories with antifoundation axioms. Next we review the model of the λβcalculus of Part 1 and also the closely related—but different!—models of Scott [51, 52] and of Engeler [19, 20]. Then we discuss general frameworks in which elementary constructions of models can be given. Following Longo [36], one can employ certain ScottEngeler algebras.
Intersection Types, λmodels, and Böhm Trees
"... This paper is an introduction to intersection type disciplines, with the aim of illustrating their theoretical relevance in the foundations of λcalculus. We start by describing the wellknown results showing the deep connection between intersection type systems and normalization properties, i.e. ..."
Abstract
 Add to MetaCart
This paper is an introduction to intersection type disciplines, with the aim of illustrating their theoretical relevance in the foundations of λcalculus. We start by describing the wellknown results showing the deep connection between intersection type systems and normalization properties, i.e., their power of naturally characterizing solvable, normalizing, and strongly normalizing pure λterms. We then explain the importance of intersection types for the semantics of λcalculus, through the construction of filter models and the representation of algebraic lattices. We end with an original result that shows how intersection types also allow to naturally characterize tree representations of unfoldings of λterms (Böhm trees).
and
"... We study a weakening of the notion of logical relations, called prelogical relations, that has many of the features that make logical relations so useful as well as further algebraic properties including composability. The basic idea is simply to require the reverse implication in the definition of ..."
Abstract
 Add to MetaCart
We study a weakening of the notion of logical relations, called prelogical relations, that has many of the features that make logical relations so useful as well as further algebraic properties including composability. The basic idea is simply to require the reverse implication in the definition of logical relations to hold only for pairs of functions that are expressible by the same lambda term. Prelogical relations are the minimal weakening of logical relations that gives composability for extensional structures and simultaneously the most liberal definition that gives the Basic Lemma. Prelogical predicates (i.e., unary prelogical relations) coincide with sets that are invariant under Kripke logical relations with varying arity as introduced by Jung and Tiuryn, and prelogical relations are the closure under projection and intersection of logical relations. These conceptually independent characterizations of prelogical relations suggest that the concept is rather intrinsic and robust. The use of prelogical relations gives an improved version of Mitchell’s representation independence theorem which characterizes observational equivalence for all signatures rather than just for firstorder signatures. Prelogical relations can be used in place of logical relations to give an account of data refinement where the fact that prelogical relations compose explains why stepwise refinement is sound.