Results 1  10
of
36
DeNoising By SoftThresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract

Cited by 798 (13 self)
 Add to MetaCart
Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an amount p 2 log(n) = p n. We prove two results about that estimator. [Smooth]: With high probability ^ fn is at least as smooth as f, in any of a wide variety of smoothness measures. [Adapt]: The estimator comes nearly as close in mean square to f as any measurable estimator can come, uniformly over balls in each of two broad scales of smoothness classes. These two properties are unprecedented in several ways. Our proof of these results develops new facts about abstract statistical inference and its connection with an optimal recovery model.
Minimax Estimation via Wavelet Shrinkage
, 1992
"... We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minim ..."
Abstract

Cited by 246 (32 self)
 Add to MetaCart
We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minimax over any member of a wide range of Triebel and Besovtype smoothness constraints, and asymptotically minimax over Besov bodies with p q. Linear estimates cannot achieve even the minimax rates over Triebel and Besov classes with p <2, so our method can signi cantly outperform every linear method (kernel, smoothing spline, sieve,:::) in a minimax sense. Variants of our method based on simple threshold nonlinearities are nearly minimax. Our method possesses the interpretation of spatial adaptivity: it reconstructs using a kernel which mayvary in shape and bandwidth from point to point, depending on the data. Least favorable distributions for certain of the Triebel and Besov scales generate objects with sparse wavelet transforms. Many real objects have similarly sparse transforms, which suggests that these minimax results are relevant for practical problems. Sequels to this paper discuss practical implementation, spatial adaptation properties and applications to inverse problems.
Wavelet shrinkage: asymptopia
 Journal of the Royal Statistical Society, Ser. B
, 1995
"... Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators bein ..."
Abstract

Cited by 239 (35 self)
 Add to MetaCart
Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators being obtained for a variety of interesting problems. Unfortunately, the results have often not been translated into practice, for a variety of reasons { sometimes, similarity to known methods, sometimes, computational intractability, and sometimes, lack of spatial adaptivity. We discuss a method for curve estimation based on n noisy data; one translates the empirical wavelet coe cients towards the origin by an amount p p 2 log(n) = n. The method is di erent from methods in common use today, is computationally practical, and is spatially adaptive; thus it avoids a number of previous objections to minimax estimators. At the same time, the method is nearly minimax for a wide variety of loss functions { e.g. pointwise error, global error measured in L p norms, pointwise and global error in estimation of derivatives { and for a wide range of smoothness classes, including standard Holder classes, Sobolev classes, and Bounded Variation. This is amuch broader nearoptimality than anything previously proposed in the minimax literature. Finally, the theory underlying the method is interesting, as it exploits a correspondence between statistical questions and questions of optimal recovery and informationbased complexity.
Unconditional bases are optimal bases for data compression and for statistical estimation
 Applied and Computational Harmonic Analysis
, 1993
"... An orthogonal basis of L 2 which is also an unconditional basis of a functional space F is a kind of optimal basis for compressing, estimating, and recovering functions in F. Simple thresholding operations, applied in the unconditional basis, work essentially better for compressing, estimating, and ..."
Abstract

Cited by 140 (23 self)
 Add to MetaCart
An orthogonal basis of L 2 which is also an unconditional basis of a functional space F is a kind of optimal basis for compressing, estimating, and recovering functions in F. Simple thresholding operations, applied in the unconditional basis, work essentially better for compressing, estimating, and recovering than they do in any other orthogonal basis. In fact, simple thresholding in an unconditional basis works essentially better for recovery and estimation than other methods, period. (Performance is measured in an asymptotic minimax sense.) As an application, we formalize and prove Mallat's Heuristic, which says that wavelet bases are optimal for representing functions containing singularities, when there may be an arbitrary number of singularities, arbitrarily distributed.
Multiscale likelihood analysis and complexity penalized estimation
 Annals of Statistics
"... We describe here a framework for a certain class of multiscale likelihood factorizations wherein, in analogy to a wavelet decomposition of an L 2 function, a given likelihood function has an alternative representation as a product of conditional densities reflecting information in both the data and ..."
Abstract

Cited by 57 (20 self)
 Add to MetaCart
We describe here a framework for a certain class of multiscale likelihood factorizations wherein, in analogy to a wavelet decomposition of an L 2 function, a given likelihood function has an alternative representation as a product of conditional densities reflecting information in both the data and the parameter vector localized in position and scale. The framework is developed as a set of sufficient conditions for the existence of such factorizations, formulated in analogy to those underlying a standard multiresolution analysis for wavelets, and hence can be viewed as a multiresolution analysis for likelihoods. We then consider the use of these factorizations in the task of nonparametric, complexity penalized likelihood estimation. We study the risk properties of certain thresholding and partitioning estimators, and demonstrate their adaptivity and nearoptimality, in a minimax sense over a broad range of function spaces, based on squared Hellinger distance as a loss function. In particular, our results provide an illustration of how properties of classical waveletbased estimators can be obtained in a single, unified framework
Recovering Edges in IllPosed Inverse Problems: Optimality of Curvelet Frames
, 2000
"... We consider a model problem of recovering a function f(x1,x2) from noisy Radon data. The function f to be recovered is assumed smooth apart from a discontinuity along a C2 curve – i.e. an edge. We use the continuum white noise model, with noise level ɛ. Traditional linear methods for solving such in ..."
Abstract

Cited by 50 (14 self)
 Add to MetaCart
We consider a model problem of recovering a function f(x1,x2) from noisy Radon data. The function f to be recovered is assumed smooth apart from a discontinuity along a C2 curve – i.e. an edge. We use the continuum white noise model, with noise level ɛ. Traditional linear methods for solving such inverse problems behave poorly in the presence of edges. Qualitatively, the reconstructions are blurred near the edges; quantitatively, they give in our model Mean Squared Errors (MSEs) that tend to zero with noise level ɛ only as O(ɛ1/2)asɛ → 0. A recent innovation – nonlinear shrinkage in the wavelet domain – visually improves edge sharpness and improves MSE convergence to O(ɛ2/3). However, as we show here, this rate is not optimal. In fact, essentially optimal performance is obtained by deploying the recentlyintroduced tight frames of curvelets in this setting. Curvelets are smooth, highly anisotropic elements ideally suited for detecting and synthesizing curved edges. To deploy them in the Radon setting, we construct a curveletbased biorthogonal decomposition
Model selection via testing: an alternative to (penalized) maximum likelihood estimators
, 2003
"... This paper is devoted to the description and study of a family of estimators, that we shall call T estimators (T for tests), for minimax estimation and model selection. Their construction is based on former ideas about deriving estimators from some families of tests due to Le Cam (1973 and 1975) ..."
Abstract

Cited by 34 (7 self)
 Add to MetaCart
This paper is devoted to the description and study of a family of estimators, that we shall call T estimators (T for tests), for minimax estimation and model selection. Their construction is based on former ideas about deriving estimators from some families of tests due to Le Cam (1973 and 1975) and Birge (1983, 1984a and b) and about complexity based model selection from Barron and Cover (1991). It is
Thresholding Estimators for Linear Inverse Problems and Deconvolutions
, 2003
"... Thresholding algorithms in an orthonormal basis are studied to estimate noisy discrete signals degraded by a linear operator whose inverse is not bounded. For signals in a set Theta, sufficient conditions are established on the basis to obtain a maximum risk with minimax rates of convergence. Deconv ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
Thresholding algorithms in an orthonormal basis are studied to estimate noisy discrete signals degraded by a linear operator whose inverse is not bounded. For signals in a set Theta, sufficient conditions are established on the basis to obtain a maximum risk with minimax rates of convergence. Deconvolutions with kernels having a Fourier transform which vanishes at high frequencies are examples of unstable inverse problems, where a thresholding in a wavelet basis is a suboptimal estimator. A new "mirror wavelet" basis is constructed to obtain a deconvolution risk which is proved to be asymptotically equivalent to the minimax risk over bounded variation signals. This thresholding estimator is used to restore blurred satellite images.
On Automatic Boundary Corrections
 Annals of Statistics
, 1996
"... Many popular curve estimators based on smoothing have difficulties caused by boundary effects. These effects are visually disturbing in practice and can play a dominant role in theoretical analysis. Local polynomial regression smoothers are known to correct boundary effects automatically. Some analo ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Many popular curve estimators based on smoothing have difficulties caused by boundary effects. These effects are visually disturbing in practice and can play a dominant role in theoretical analysis. Local polynomial regression smoothers are known to correct boundary effects automatically. Some analogs are implemented for density estimation and the resulting estimators also achieve automatic boundary corrections. In both settings of density and regression estimation, we investigate best weight functions for local polynomial fitting at the endpoints and find a simple solution. The solution is universal for general degree of local polynomial fitting and general order of estimated derivative. Furthermore, such local polynomial estimators are best among all linear estimators in a weak minimax sense. And they are highly efficient even in the usual linear minimax sense. 0 This research is part of MingYen Cheng's dissertation under the supervision of Professors J. Fan and J. S. Marron at th...
Asymptotic minimaxity of wavelet estimators with sampled data’, Statist
 Sinica
, 1999
"... Donoho and Johnstone (1997) studied a setting where data were obtained in the continuum white noise model and showed that scalar nonlinearities applied to wavelet coefficients gave estimators which were asymptotically minimax over Besov balls. They claimed that this implied similar asymptotic minima ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
Donoho and Johnstone (1997) studied a setting where data were obtained in the continuum white noise model and showed that scalar nonlinearities applied to wavelet coefficients gave estimators which were asymptotically minimax over Besov balls. They claimed that this implied similar asymptotic minimaxity results in the sampleddata model. In this paper we carefully develop and fully prove this implication. Our results are based on a careful definition of an empirical wavelet transform and precise bounds on the discrepancy between empirical wavelet coefficiets and the theoretical wavelet coefficients.