Results 1 
1 of
1
Is the Continuum Hypothesis a definite mathematical problem?
"... [t]he analysis of the phrase “how many ” unambiguously leads to a definite meaning for the question [“How many different sets of integers do their exist?”]: the problem is to find out which one of the א’s is the number of points of a straight line … Cantor, after having proved that this number is gr ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
[t]he analysis of the phrase “how many ” unambiguously leads to a definite meaning for the question [“How many different sets of integers do their exist?”]: the problem is to find out which one of the א’s is the number of points of a straight line … Cantor, after having proved that this number is greater than א0, conjectured that it is א1. An equivalent proposition is this: any infinite subset of the continuum has the power either of the set of integers or of the whole continuum. This is Cantor’s continuum hypothesis. … But, although Cantor’s set theory has now had a development of more than sixty years and the [continuum] problem is evidently of great importance for it, nothing has been proved so far relative to the question of what the power of the continuum is or whether its subsets satisfy the condition just stated, except that … it is true for a certain infinitesimal fraction of these subsets, [namely] the analytic sets. Not even an upper bound, however high, can be assigned for the power of the continuum. It is undecided whether this number is regular or singular, accessible or inaccessible, and (except for König’s negative result) what its character of cofinality is. Gödel 1947, 516517 [in Gödel 1990, 178]