Results 1 
5 of
5
Nearest Common Ancestors: A survey and a new distributed algorithm
, 2002
"... Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete ba ..."
Abstract

Cited by 76 (12 self)
 Add to MetaCart
Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete balanced binary trees is straightforward. Furthermore, for complete balanced binary trees we can easily solve the problem in a distributed way by labeling the nodes of the tree such that from the labels of two nodes alone one can compute the label of their nearest common ancestor. Whether it is possible to distribute the data structure into short labels associated with the nodes is important for several applications such as routing. Therefore, related labeling problems have received a lot of attention recently.
A Practical Minimum Spanning Tree Algorithm Using the Cycle Property
 IN 11TH EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA), NUMBER 2832 IN LNCS
, 2003
"... We present a simple new (randomized) algorithm for computing minimum spanning trees that is more than two times faster than the best previously known algorithms (for dense, "difficult" inputs). It is of conceptual interest that the algorithm uses the property that the heaviest edge in a cycle can be ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
We present a simple new (randomized) algorithm for computing minimum spanning trees that is more than two times faster than the best previously known algorithms (for dense, "difficult" inputs). It is of conceptual interest that the algorithm uses the property that the heaviest edge in a cycle can be discarded. Previously this has only been exploited in asymptotically optimal algorithms that are considered impractical. An additional advantage is...
Identifying Nearest Common Ancestors in a Distributed Environment
, 2001
"... We give a simple algorithm that labels the nodes of a rooted tree such that from the labels of two nodes alone one can compute in constant time the label of their nearest common ancestor. The labels assigned by our algorithm are of size O(log n) bits where n is the number of nodes in the tree. The a ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We give a simple algorithm that labels the nodes of a rooted tree such that from the labels of two nodes alone one can compute in constant time the label of their nearest common ancestor. The labels assigned by our algorithm are of size O(log n) bits where n is the number of nodes in the tree. The algorithm runs in O(n) time.
Minimizing Randomness in Minimum Spanning Tree, Parallel Connectivity, and Set Maxima Algorithms
 In Proc. 13th Annual ACMSIAM Symposium on Discrete Algorithms (SODA'02
, 2001
"... There are several fundamental problems whose deterministic complexity remains unresolved, but for which there exist randomized algorithms whose complexity is equal to known lower bounds. Among such problems are the minimum spanning tree problem, the set maxima problem, the problem of computing conne ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
There are several fundamental problems whose deterministic complexity remains unresolved, but for which there exist randomized algorithms whose complexity is equal to known lower bounds. Among such problems are the minimum spanning tree problem, the set maxima problem, the problem of computing connected components and (minimum) spanning trees in parallel, and the problem of performing sensitivity analysis on shortest path trees and minimum spanning trees. However, while each of these problems has a randomized algorithm whose performance meets a known lower bound, all of these randomized algorithms use a number of random bits which is linear in the number of operations they perform. We address the issue of reducing the number of random bits used in these randomized algorithms. For each of the problems listed above, we present randomized algorithms that have optimal performance but use only a polylogarithmic number of random bits; for some of the problems our optimal algorithms use only log n random bits. Our results represent an exponential savings in the amount of randomness used to achieve the same optimal performance as in the earlier algorithms. Our techniques are general and could likely be applied to other problems.
An InverseAckermann Style Lower Bound for Online Minimum Spanning Tree Verification
 Combinatorica
"... 1 Introduction The minimum spanning tree (MST) problem has seen a flurry of activity lately, driven largely by the success of a new approach to the problem. The recent MST algorithms [20, 8, 29, 28], despite their superficial differences, are all based on the idea of progressively improving an appro ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
1 Introduction The minimum spanning tree (MST) problem has seen a flurry of activity lately, driven largely by the success of a new approach to the problem. The recent MST algorithms [20, 8, 29, 28], despite their superficial differences, are all based on the idea of progressively improving an approximately minimum solution, until the actual minimum spanning tree is found. It is still likely that this progressive improvement approach will bear fruit. However, the current