Results 1  10
of
144
Synchronization and linearity: an algebra for discrete event systems
, 2001
"... The first edition of this book was published in 1992 by Wiley (ISBN 0 471 93609 X). Since this book is now out of print, and to answer the request of several colleagues, the authors have decided to make it available freely on the Web, while retaining the copyright, for the benefit of the scientific ..."
Abstract

Cited by 250 (10 self)
 Add to MetaCart
The first edition of this book was published in 1992 by Wiley (ISBN 0 471 93609 X). Since this book is now out of print, and to answer the request of several colleagues, the authors have decided to make it available freely on the Web, while retaining the copyright, for the benefit of the scientific community. Copyright Statement This electronic document is in PDF format. One needs Acrobat Reader (available freely for most platforms from the Adobe web site) to benefit from the full interactive machinery: using the package hyperref by Sebastian Rahtz, the table of contents and all LATEX crossreferences are automatically converted into clickable hyperlinks, bookmarks are generated automatically, etc.. So, do not hesitate to click on references to equation or section numbers, on items of thetableofcontents and of the index, etc.. One may freely use and print this document for one’s own purpose or even distribute it freely, but not commercially, provided it is distributed in its entirety and without modifications, including this preface and copyright statement. Any use of thecontents should be acknowledged according to the standard scientific practice. The
Routing and Wavelength Assignment in AllOptical Networks
 IEEE/ACM Transactions on Networking
, 1995
"... This paper considers the problem of routing connections in a reconfigurable optical network using wavelength division multiplexing, where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, such that connections whose paths sha ..."
Abstract

Cited by 203 (10 self)
 Add to MetaCart
This paper considers the problem of routing connections in a reconfigurable optical network using wavelength division multiplexing, where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, such that connections whose paths share a common link in the network are assigned different wavelengths. We derive an upper bound on the carried traffic of connections (or equivalently, a lower bound on the blocking probability) for any routing and wavelength assignment (RWA) algorithm in such a network. The bound scales with the number of wavelengths and is achieved asymptotically (when a large number of wavelengths is available) by a fixed RWA algorithm. Although computationally intensive, our bound can be used as a metric against which the performance of different RWA algorithms can be compared for networks of moderate size. We illustrate this by comparing the performance of a simple shortestpath RWA (SPRWA) algorithm via...
An Incremental Algorithm for a Generalization of the ShortestPath Problem
, 1992
"... The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsume ..."
Abstract

Cited by 116 (1 self)
 Add to MetaCart
The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsumes the problem of finding optimal hyperpaths in directed hypergraphs (under varying optimization criteria) that has received attention recently. In this paper we present an incremental algorithm for a version of the grammar problem. As a special case of this algorithm we obtain an efficient incremental algorithm for the singlesource shortestpath problem with positive edge lengths. The aspect of our work that distinguishes it from other work on the dynamic shortestpath problem is its ability to handle "multiple heterogeneous modifications": between updates, the input graph is allowed to be restructured by an arbitrary mixture of edge insertions, edge deletions, and edgelength changes.
Interval propagation to reason about sets: definition and implementation of a practical language
 CONSTRAINTS
, 1997
"... Local consistency techniques have been introduced in logic programming in order to extend the application domain of logic programming languages. The existing languages based on these techniques consider arithmetic constraints applied to variables ranging over nite integer domains. This makes difficu ..."
Abstract

Cited by 102 (5 self)
 Add to MetaCart
Local consistency techniques have been introduced in logic programming in order to extend the application domain of logic programming languages. The existing languages based on these techniques consider arithmetic constraints applied to variables ranging over nite integer domains. This makes difficult a natural and concise modelling as well as an efficient solving of a class of NPcomplete combinatorial search problems dealing with sets. To overcome these problems, we propose a solution which consists in extending the notion of integer domains to that of set domains (sets of sets). We specify a set domain by an interval whose lower and upper bounds are known sets, ordered by set inclusion. We define the formal and practical framework of a new constraint logic programming language over set domains, called Conjunto. Conjunto comprises the usual set operation symbols ([ � \ � n), and the set inclusion relation (). Set expressions built using the operation symbols are interpreted as relations (s [ s1 = s2,...). In addition, Conjunto provides us with a set of constraints called graduated constraints (e.g. the set cardinality) which map sets onto arithmetic terms. This allows us to handle optimization problems by applying a cost function to the quantifiable, i.e., arithmetic, terms which are associated to set terms. The constraint solving in Conjunto is based on local consistency techniques using interval reasoning which are extended to handle set constraints. The main contribution of this paper concerns the formal definition of the language and its design and implementation as a practical language.
Optimal Junction Trees
 In UAI
, 1994
"... The paper deals with optimality issues in connection with updating beliefs in networks. We address two processes: triangulation and construction of junction trees. In the first part, we give a simple algorithm for constructing an optimal junction tree from a triangulated network. In the second part, ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
The paper deals with optimality issues in connection with updating beliefs in networks. We address two processes: triangulation and construction of junction trees. In the first part, we give a simple algorithm for constructing an optimal junction tree from a triangulated network. In the second part, we argue that any exact method based on local calculations must either be less efficient than the junction tree method, or it has an optimality problem equivalent to that of triangulation. 1 INTRODUCTION The junction tree propagation method (Jensen et al., 1990
SEMIRING FRAMEWORKS AND ALGORITHMS FOR SHORTESTDISTANCE PROBLEMS
, 2002
"... We define general algebraic frameworks for shortestdistance problems based on the structure of semirings. We give a generic algorithm for finding singlesource shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorit ..."
Abstract

Cited by 72 (20 self)
 Add to MetaCart
We define general algebraic frameworks for shortestdistance problems based on the structure of semirings. We give a generic algorithm for finding singlesource shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorithm can be used to solve efficiently classical shortest paths problems or to find the kshortest distances in a directed graph. It can be used to solve singlesource shortestdistance problems in weighted directed acyclic graphs over any semiring. We examine several semirings and describe some specific instances of our generic algorithms to illustrate their use and compare them with existing methods and algorithms. The proof of the soundness of all algorithms is given in detail, including their pseudocode and a full analysis of their running time complexity.
A Theoretical and Experimental Comparison of Constraint Propagation Techniques for Disjunctive Scheduling
, 1995
"... Disjunctive constraints are widely used to ensure that the time intervals over whichtwo activities require the same resource cannot overlap: if a resource is required bytwo activities A and B, the disjunctive constraint states that either A precedes B or B precedes A. The #propagation " of di ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
Disjunctive constraints are widely used to ensure that the time intervals over whichtwo activities require the same resource cannot overlap: if a resource is required bytwo activities A and B, the disjunctive constraint states that either A precedes B or B precedes A. The #propagation " of disjunctive constraints consists in determining cases where only one of the two orderings is feasible. It results in updating the timebounds of the two activities. The standard algorithm for propagating disjunctive constraints achieves arcBconsistency.Twotypes of methods that provide more precise timebounds are studied and compared. The #rst type of method consists in determining whether an activity A must, can, or cannot be the #rst or the last to execute among a set of activities that require the same resource. The second consists in comparing the amount of #resource energy" required over a time interval #t 1 t 2 #to the amount of energy that is available over the same interval. The main result of the study is an implementation of the #rst method in Ilog Schedule, a generic tool for constraintbased scheduling which exhibits performance in the same range of e#ciency as speci#c operations research algorithms.
Maximum common subgraph isomorphism algorithms for the matching of chemical structures
 Journal of ComputerAided Molecular Design
, 2002
"... Received 03.03.2002; accepted in final form 16.08.2002 ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
Received 03.03.2002; accepted in final form 16.08.2002
Representing Trees in Genetic Algorithms
 Proceedings of the First IEEE Conference on Evolutionary Computation
, 1994
"... We consider the problem of representing trees (undirected, cyclefree graphs) in Genetic Algorithms. This problem arises, among other places, in the solution of network design problems. After comparing several commonly used representations based on their usefulness in genetic algorithms, we describe ..."
Abstract

Cited by 46 (1 self)
 Add to MetaCart
We consider the problem of representing trees (undirected, cyclefree graphs) in Genetic Algorithms. This problem arises, among other places, in the solution of network design problems. After comparing several commonly used representations based on their usefulness in genetic algorithms, we describe a new representation and show it to be superior in almost all respects to the others. In particular, we show that our representation covers the entire space of solutions, produces only viable offspring, and possesses locality, all necessary features for the effective use of a genetic algorithm. We also show that the representation will reliably produce very good, if not optimal, solutions even when the problem definition is changed. I. Introduction In this paper, we consider the problem of representing trees in genetic algorithms. A tree is an undirected graph which contains no closed cycles. There are many optimization problems which can be phrased in terms of finding the optimal tree wit...