Results 1 
2 of
2
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases
 In proceedings of ACM SIGMOD Conference on Management of Data
, 2002
"... Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced d ..."
Abstract

Cited by 302 (32 self)
 Add to MetaCart
(Show Context)
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Adaptive Piecewise Constant Approximation (APCA). While previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in the database that minimizes the global reconstruction error, APCA approximates each time series by a set of constant value segments' of varying lengths' such that their individual reconstruction errors' are minimal. We show how APCA can be indexed using a multidimensional index structure. We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast searching: a lower bounding Euclidean distance approximation, and a nonlower bounding, but very tight Euclidean distance approximation and show how they can support fast exact searchin& and even faster approximate searching on the same index structure. We theoretically and empirically compare APCA to all the other techniques and demonstrate its' superiority.
Segmenting Time Series: A Survey and Novel Approach
 In an Edited Volume, Data mining in Time Series Databases. Published by World Scientific
, 1993
"... In recent years, there has been an explosion of interest in mining time series databases. As with most computer science problems, representation of the data is the key to efficient and effective solutions. One of the most commonly used representations is piecewise linear approximation. This represen ..."
Abstract

Cited by 75 (0 self)
 Add to MetaCart
(Show Context)
In recent years, there has been an explosion of interest in mining time series databases. As with most computer science problems, representation of the data is the key to efficient and effective solutions. One of the most commonly used representations is piecewise linear approximation. This representation has been used by various researchers to support clustering, classification, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain this representation, with several algorithms having been independently rediscovered several times. In this paper, we undertake the first extensive review and empirical comparison of all proposed techniques. We show that all these algorithms have fatal flaws from a data mining perspective. We introduce a novel algorithm that we empirically show to be superior to all others in the literature.