Results 1  10
of
184
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 895 (69 self)
 Add to MetaCart
(Show Context)
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature; these lead to very effective importance distributions. Furthermore we describe a method which uses RaoBlackwellisation in order to take advantage of the analytic structure present in some important classes of statespace models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 776 (86 self)
 Add to MetaCart
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach.
Filtering via Simulation: Auxiliary Particle Filters
 Journal of the American Statistical Association
, 1999
"... ..."
Monte Carlo Localization: Efficient Position Estimation for Mobile Robots
 IN PROC. OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI
, 1999
"... This paper presents a new algorithm for mobile robot localization, called Monte Carlo Localization (MCL). MCL is a version of Markov localization, a family of probabilistic approaches that have recently been applied with great practical success. However, previous approaches were either computational ..."
Abstract

Cited by 327 (50 self)
 Add to MetaCart
(Show Context)
This paper presents a new algorithm for mobile robot localization, called Monte Carlo Localization (MCL). MCL is a version of Markov localization, a family of probabilistic approaches that have recently been applied with great practical success. However, previous approaches were either computationally cumbersome (such as gridbased approaches that represent the state space by highresolution 3D grids), or had to resort to extremely coarsegrained resolutions. Our approach is computationally efficient while retaining the ability to represent (almost) arbitrary distributions. MCL applies samplingbased methods for approximating probability distributions, in a way that places computation " where needed." The number of samples is adapted online, thereby invoking large sample sets only when necessary. Empirical results illustrate that MCL yields improved accuracy while requiring an order of magnitude less computation when compared to previous approaches. It is also much easier to implement...
A realtime algorithm for mobile robot mapping with applications to multirobot and 3D mapping
 In IEEE International Conference on Robotics and Automation
, 2000
"... We present an incremental method for concurrent mapping and localization for mobile robots equipped with 2D laser range finders. The approach uses a fast implementation of scanmatching for mapping, paired with a samplebased probabilistic method for localization. Compact 3D maps are generated using ..."
Abstract

Cited by 307 (37 self)
 Add to MetaCart
(Show Context)
We present an incremental method for concurrent mapping and localization for mobile robots equipped with 2D laser range finders. The approach uses a fast implementation of scanmatching for mapping, paired with a samplebased probabilistic method for localization. Compact 3D maps are generated using a multiresolution approach adopted from the computer graphics literature, fed by data from a dual laser system. Our approach builds 3D maps of large, cyclic environments in realtime. It is remarkably robust. Experimental results illustrate that accurate maps of large, cyclic environments can be generated even in the absence of any odometric data. 1
Localization for Mobile Sensor Networks
 Proc. MobiCom
, 2004
"... Many sensor network applications require location awareness, but it is often too expensive to include a GPS receiver in a sensor network node. Hence, localization schemes for sensor networks typically use a small number of seed nodes that know their location and protocols whereby other nodes estimat ..."
Abstract

Cited by 278 (0 self)
 Add to MetaCart
(Show Context)
Many sensor network applications require location awareness, but it is often too expensive to include a GPS receiver in a sensor network node. Hence, localization schemes for sensor networks typically use a small number of seed nodes that know their location and protocols whereby other nodes estimate their location from the messages they receive. Several such localization techniques have been proposed, but none of them consider mobile nodes and seeds. Although mobility would appear to make localization more difficult, in this paper we introduce the sequential Monte Carlo Localization method and argue that it can exploit mobility to improve the accuracy and precision of localization. Our approach does not require additional hardware on the nodes and works even when the movement of seeds and nodes is uncontrollable. We analyze the properties of our technique and report experimental results from simulations. Our scheme outperforms the best known static localization schemes under a wide range of conditions.
An Online Mapping Algorithm for Teams of Mobile Robots
 International Journal of Robotics Research
, 2001
"... We propose a new probabilistic algorithm for online mapping of unknown environments with teams of robots. At the core of the algorithm is a technique that combines fast maximum likelihood map growing with a Monte Carlo localizer that uses particle representations. The combination of both yields an o ..."
Abstract

Cited by 223 (14 self)
 Add to MetaCart
We propose a new probabilistic algorithm for online mapping of unknown environments with teams of robots. At the core of the algorithm is a technique that combines fast maximum likelihood map growing with a Monte Carlo localizer that uses particle representations. The combination of both yields an online algorithm that can cope with large odometric errors typically found when mapping an environment with cycles. The algorithm can be implemented distributedly on multiple robot platforms, enabling a team of robots to cooperatively generate a single map of their environment. Finally, an extension is described for acquiring threedimensional maps, which capture the structure and visual appearance of indoor environments in 3D.
A Probabilistic Approach to Collaborative MultiRobot Localization
, 2000
"... This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach uses a samplebased version of Markov localization, capable of localizing mobile robots in an anytime fashion. When teams of robots localize themselves in the same environment, probabilistic method ..."
Abstract

Cited by 216 (18 self)
 Add to MetaCart
This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach uses a samplebased version of Markov localization, capable of localizing mobile robots in an anytime fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot's belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and highcost sensors are amortized across multiple robot platforms. The technique has been implemented and tested using two mobile robots equipped with cameras and laser rangefinders for detecting other robots. The results, obtained with the real robots and in series of simulation runs, illustrate drastic improvements in localization speed and accuracy when compared to conventional singlerobot localization. A further experiment demonstrates that under certain conditions, successful localization is only possible if teams of heterogeneous robots collaborate during localization.
FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges
"... In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM that overcomes important deficiencies of the original algorithm. We prove convergence of this ..."
Abstract

Cited by 212 (7 self)
 Add to MetaCart
(Show Context)
In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM that overcomes important deficiencies of the original algorithm. We prove convergence of this new algorithm for linear SLAM problems and provide realworld experimental results that illustrate an order of magnitude improvement in accuracy over the original FastSLAM algorithm. 1