Results 1  10
of
362
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
, 2010
"... ..."
(Show Context)
Smooth minimization of nonsmooth functions
 Math. Programming
, 2005
"... In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit maxstructure. Our approach can be considered as an alternative to blackbox minimization. F ..."
Abstract

Cited by 436 (1 self)
 Add to MetaCart
(Show Context)
In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit maxstructure. Our approach can be considered as an alternative to blackbox minimization. From the viewpoint of efficiency estimates, we manage to improve the traditional bounds on the number of iterations of the gradient schemes from O unchanged. 1 ɛ 2 to O
Fast Linear Iterations for Distributed Averaging
 Systems and Control Letters
, 2003
"... We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear ..."
Abstract

Cited by 348 (13 self)
 Add to MetaCart
(Show Context)
We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based on the Laplacian of the associated graph.
Optimization of Conditional ValueatRisk
 Journal of Risk
, 2000
"... A new approach to optimizing or hedging a portfolio of nancial instruments to reduce risk is presented and tested on applications. It focuses on minimizing Conditional ValueatRisk (CVaR) rather than minimizing ValueatRisk (VaR), but portfolios with low CVaR necessarily have low VaR as well. CVaR ..."
Abstract

Cited by 341 (25 self)
 Add to MetaCart
A new approach to optimizing or hedging a portfolio of nancial instruments to reduce risk is presented and tested on applications. It focuses on minimizing Conditional ValueatRisk (CVaR) rather than minimizing ValueatRisk (VaR), but portfolios with low CVaR necessarily have low VaR as well. CVaR, also called Mean Excess Loss, Mean Shortfall, or Tail VaR, is anyway considered to be a more consistent measure of risk than VaR. Central to the new approach is a technique for portfolio optimization which calculates VaR and optimizes CVaR simultaneously. This technique is suitable for use by investment companies, brokerage rms, mutual funds, and any business that evaluates risks. It can be combined with analytical or scenariobased methods to optimize portfolios with large numbers of instruments, in which case the calculations often come down to linear programming or nonsmooth programming. The methodology can be applied also to the optimization of percentiles in contexts outside of nance.
The impact of imperfect scheduling on crosslayer congestion control in wireless networks
, 2005
"... In this paper, we study crosslayer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal crosslayer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the under ..."
Abstract

Cited by 327 (30 self)
 Add to MetaCart
In this paper, we study crosslayer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal crosslayer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the underlying layers. However, the scheduling component in this optimal crosslayer congestion control scheme has to solve a complex global optimization problem at each time, and is hence too computationally expensive for online implementation. In this paper, we study how the performance of crosslayer congestion control will be impacted if the network can only use an imperfect (and potentially distributed) scheduling component that is easier to implement. We study both the case when the number of users in the system is fixed and the case with dynamic arrivals and departures of the users, and we establish performance bounds of crosslayer congestion control with imperfect scheduling. Compared with a layered approach that does not design congestion control and scheduling together, our crosslayer approach has provably better performance bounds, and substantially outperforms the layered approach. The insights drawn from our analyses also enable us to design a fully distributed crosslayer congestion control and scheduling algorithm for a restrictive interference model.
On Projection Algorithms for Solving Convex Feasibility Problems
, 1996
"... Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of the ..."
Abstract

Cited by 292 (41 self)
 Add to MetaCart
(Show Context)
Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of these algorithms, a very broad and flexible framework is investigated . Several crucial new concepts which allow a systematic discussion of questions on behaviour in general Hilbert spaces and on the quality of convergence are brought out. Numerous examples are given. 1991 M.R. Subject Classification. Primary 47H09, 49M45, 6502, 65J05, 90C25; Secondary 26B25, 41A65, 46C99, 46N10, 47N10, 52A05, 52A41, 65F10, 65K05, 90C90, 92C55. Key words and phrases. Angle between two subspaces, averaged mapping, Cimmino's method, computerized tomography, convex feasibility problem, convex function, convex inequalities, convex programming, convex set, Fej'er monotone sequence, firmly nonexpansive mapping, H...
An interiorpoint method for largescale l1regularized logistic regression
 Journal of Machine Learning Research
, 2007
"... Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand ..."
Abstract

Cited by 243 (8 self)
 Add to MetaCart
(Show Context)
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC; medium sized problems, with tens of thousands of features and examples, can be solved in tens of seconds (assuming some sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search step, can solve very large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warmstart techniques, a good approximation of the entire regularization path can be computed much more efficiently than by solving a family of problems independently.
Distributed Subgradient Methods for Multiagent Optimization
, 2007
"... We study a distributed computation model for optimizing a sum of convex objective functions corresponding to multiple agents. For solving this (not necessarily smooth) optimization problem, we consider a subgradient method that is distributed among the agents. The method involves every agent minimiz ..."
Abstract

Cited by 228 (22 self)
 Add to MetaCart
(Show Context)
We study a distributed computation model for optimizing a sum of convex objective functions corresponding to multiple agents. For solving this (not necessarily smooth) optimization problem, we consider a subgradient method that is distributed among the agents. The method involves every agent minimizing his/her own objective function while exchanging information locally with other agents in the network over a timevarying topology. We provide convergence results and convergence rate estimates for the subgradient method. Our convergence rate results explicitly characterize the tradeoff between a desired accuracy of the generated approximate optimal solutions and the number of iterations needed to achieve the accuracy.
A Tutorial on Decomposition Methods for Network Utility Maximization
 IEEE J. Sel. Areas Commun
, 2006
"... Abstract—A systematic understanding of the decomposability structures in network utility maximization is key to both resource allocation and functionality allocation. It helps us obtain the most appropriate distributed algorithm for a given network resource allocation problem, and quantifies the com ..."
Abstract

Cited by 163 (4 self)
 Add to MetaCart
(Show Context)
Abstract—A systematic understanding of the decomposability structures in network utility maximization is key to both resource allocation and functionality allocation. It helps us obtain the most appropriate distributed algorithm for a given network resource allocation problem, and quantifies the comparison across architectural alternatives of modularized network design. Decomposition theory naturally provides the mathematical language to build an analytic foundation for the design of modularized and distributed control of networks. In this tutorial paper, we first review the basics of convexity, Lagrange duality, distributed subgradient method, Jacobi and Gauss–Seidel iterations, and implication of different time scales of variable updates. Then, we introduce primal, dual, indirect, partial, and hierarchical decompositions, focusing on network utility maximization problem formulations and the meanings of primal and dual decompositions in terms of network architectures. Finally, we present recent examples on: systematic search for alternative decompositions; decoupling techniques for coupled objective functions; and decoupling techniques for coupled constraint sets that are not readily decomposable. Index Terms—Congestion control, crosslayer design, decomposition, distributed algorithm, network architecture, network control by pricing, network utility maximization, optimization, power control, resource allocation. I.