Results 11 
16 of
16
An Overview of the Computably Enumerable Sets
"... The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do not study the partial ordering of the c.e. degrees under Turing reducibility, although a number of the results here relate the algebraic structure of a c.e. set A to its (Turing) degree in the sense of the information content of A. We consider here various properties of E: (1) deønable properties; (2) automorphisms; (3) invariant properties; (4) decidability and undecidability results; miscellaneous results. This is not intended to be a comprehensive survey of all results in the subject since 1987, but we give a number of references in the bibliography to other results.
Dynamic Properties of Computably Enumerable Sets
 In Computability, Enumerability, Unsolvability, volume 224 of London Math. Soc. Lecture Note Ser
, 1995
"... A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating t ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating the denable (especially Edenable) properties of a c.e. set A to its iinformation contentj, namely its Turing degree, deg(A), under T , the usual Turing reducibility. [Turing 1939]. Recently, Harrington and Soare answered a question arising from Post's program by constructing a nonemptly Edenable property Q(A) which guarantees that A is incomplete (A !T K). The property Q(A) is of the form (9C)[A ae m C & Q \Gamma (A; C)], where A ae m C abbreviates that iA is a major subset of Cj, and Q \Gamma (A; C) contains the main ingredient for incompleteness. A dynamic property P (A), such as prompt simplicity, is one which is dened by considering how fast elements elements enter A relat...
Simple and Immune Relations on Countable Structures ∗
"... Let A be a computable structure and let R be a new relation on its domain. We establish a necessary and sufficient condition for the existence of a copy B of A in which the image of R (¬R, resp.) is simple (immune, resp.) relative to B. We also establish, under certain effectiveness conditions on A ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Let A be a computable structure and let R be a new relation on its domain. We establish a necessary and sufficient condition for the existence of a copy B of A in which the image of R (¬R, resp.) is simple (immune, resp.) relative to B. We also establish, under certain effectiveness conditions on A and R, a necessary and sufficient condition for the existence of a computable copy B of A in which the image of R (¬R, resp.) is simple (immune, resp.). ∗The first three authors gratefully acknowledge support of the NSF Binational Grant DMS
Definable properties of the computably enumerable sets
 Proceedings of the Oberwolfach Conference on Computability Theory
, 1996
"... Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in the ..."
Abstract
 Add to MetaCart
Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in the inclusion ordering of c.e. subsets of!, namely E = (fWngn2! ; ae). In the 1950's and 1960's Tennenbaum, Martin, Yates, Sacks, Lachlan, Shoenfield and others produced a number of elegant results relating Edefinable properties of A, like maximal, hhsimple, atomless, to the information content (usually the
Extensions, Automorphisms, and Definability
 CONTEMPORARY MATHEMATICS
"... This paper contains some results and open questions for automorphisms and definable properties of computably enumerable (c.e.) sets. It has long been apparent in automorphisms of c.e. sets, and is now becoming apparent in applications to topology and dierential geometry, that it is important to ..."
Abstract
 Add to MetaCart
This paper contains some results and open questions for automorphisms and definable properties of computably enumerable (c.e.) sets. It has long been apparent in automorphisms of c.e. sets, and is now becoming apparent in applications to topology and dierential geometry, that it is important to know the dynamical properties of a c.e. set We , not merely whether an element x is enumerated in We but when, relative to its appearance in other c.e. sets. We present here