Results 1  10
of
3,197
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 662 (15 self)
 Add to MetaCart
This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the ℓ1minimization problem (‖x‖ℓ1:= i xi) min g∈R n ‖y − Ag‖ℓ1 provided that the support of the vector of errors is not too large, ‖e‖ℓ0: = {i: ei ̸= 0}  ≤ ρ · m for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted. This work is related to the problem of finding sparse solutions to vastly underdetermined systems of linear equations. There are also significant connections with the problem of recovering signals from highly incomplete measurements. In fact, the results introduced in this paper improve on our earlier work [5]. Finally, underlying the success of ℓ1 is a crucial property we call the uniform uncertainty principle that we shall describe in detail.
Cognitive Radio: BrainEmpowered Wireless Communications
 IEEE J. Selected Areas in Comm
, 2005
"... Abstract—Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a softwaredefined radio, is defined as an intelligent wireless communication system that is aware of its environment ..."
Abstract

Cited by 543 (0 self)
 Add to MetaCart
Abstract—Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a softwaredefined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understandingbybuilding to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: • highly reliable communication whenever and wherever needed; • efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radioscene analysis. 2) Channelstate estimation and predictive modeling. 3) Transmitpower control and dynamic spectrum management. This paper also discusses the emergent behavior of cognitive radio. Index Terms—Awareness, channelstate estimation and predictive modeling, cognition, competition and cooperation, emergent behavior, interference temperature, machine learning, radioscene analysis, rate feedback, spectrum analysis, spectrum holes, spectrum management, stochastic games, transmitpower control, water filling.
Distance metric learning for large margin nearest neighbor classification
 In NIPS
, 2006
"... We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven ..."
Abstract

Cited by 326 (10 self)
 Add to MetaCart
We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification—for example, achieving a test error rate of 1.3 % on the MNIST handwritten digits. As in support vector machines (SVMs), the learning problem reduces to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our framework requires no modification or extension for problems in multiway (as opposed to binary) classification. 1
Robust face recognition via sparse representation,” (preprint
 IEEE Trans. Pattern Analysis and Machine Intelligence
"... Abstract — We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sp ..."
Abstract

Cited by 321 (22 self)
 Add to MetaCart
Abstract — We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1minimization, we propose a general classification algorithm for (imagebased) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as Eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly, by exploiting the fact that these errors are often sparse w.r.t. to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm, and corroborate the above claims.
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 298 (1 self)
 Add to MetaCart
This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis.
Online passiveaggressive algorithms
 JMLR
, 2006
"... We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new alg ..."
Abstract

Cited by 293 (22 self)
 Add to MetaCart
We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new algorithms and accompanying loss bounds for hingeloss regression and uniclass. We also get refined loss bounds for previously studied classification algorithms. 1
Signal recovery from random measurements via Orthogonal Matching Pursuit
 IEEE Trans. Inform. Theory
, 2007
"... Abstract. This technical report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement ove ..."
Abstract

Cited by 292 (9 self)
 Add to MetaCart
Abstract. This technical report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over previous results for OMP, which require O(m 2) measurements. The new results for OMP are comparable with recent results for another algorithm called Basis Pursuit (BP). The OMP algorithm is faster and easier to implement, which makes it an attractive alternative to BP for signal recovery problems. 1.
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 279 (15 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs require Ω(1/ɛ2) iterations. As in previously devised SVM solvers, the number of iterations also scales linearly with 1/λ, where λ is the regularization parameter of SVM. For a linear kernel, the total runtime of our method is Õ(d/(λɛ)), where d is a bound on the number of nonzero features in each example. Since the runtime does not depend directly on the size of the training set, the resulting algorithm is especially suited for learning from large datasets. Our approach also extends to nonlinear kernels while working solely on the primal objective function, though in this case the runtime does depend linearly on the training set size. Our algorithm is particularly well suited for large text classification problems, where we demonstrate an orderofmagnitude speedup over previous SVM learning methods.
Large scale multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We s ..."
Abstract

Cited by 222 (18 self)
 Add to MetaCart
While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We show that it can be rewritten as a semiinfinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and oneclass classification. Experimental results show that the proposed algorithm works for hundred thousands of examples or hundreds of kernels to be combined, and helps for automatic model selection, improving the interpretability of the learning result. In a second part we discuss general speed up mechanism for SVMs, especially when used with sparse feature maps as appear for string kernels, allowing us to train a string kernel SVM on a 10 million realworld splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly available at