Results 1  10
of
11
The Complexity Of Propositional Proofs
 Bulletin of Symbolic Logic
, 1995
"... This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on ..."
Abstract

Cited by 105 (2 self)
 Add to MetaCart
This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on
What is an Inference Rule?
 Journal of Symbolic Logic
, 1992
"... What is an inference rule? This question does not have a unique answer. One usually nds two distinct standard answers in the literature: validity inference ( ` v ' if for every substitution , the validity of [] entails the validity of [']), and truth inference ( ` t ' if for every substitution , ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
What is an inference rule? This question does not have a unique answer. One usually nds two distinct standard answers in the literature: validity inference ( ` v ' if for every substitution , the validity of [] entails the validity of [']), and truth inference ( ` t ' if for every substitution , the truth of [] entails the truth of [']). In this paper we introduce a general semantic framework that allows us to investigate the notion of inference more carefully. Validity inference and truth inference are in some sense the extremal points in our framework. We investigate the relationship between various types of inference in our general framework, and consider the complexity of deciding if an inference rule is sound, in the context of a number of logics of interest: classical propositional logic, a nonstandard propositional logic, various propositional modal logics, and rstorder logic.
Hilbert’s twentyfourth problem
 American Mathematical Monthly
, 2001
"... 1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Cong ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Congress of Mathematicians (ICM) in Paris has tremendous importance for all mathematicians. Moreover, a substantial part of
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
Epsilonsubstitution method for the ramified language and # 1 comprehension rule
 Logic and Foundations of Mathematics
, 1999
"... We extend to Ramified Analysis the definition and termination proof of Hilbert’s ɛsubstitution method. This forms a base for future extensions to predicatively reducible subsystems of analysis. First such system treated here is second order arithmetic with ∆1 1comprehension rule. ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We extend to Ramified Analysis the definition and termination proof of Hilbert’s ɛsubstitution method. This forms a base for future extensions to predicatively reducible subsystems of analysis. First such system treated here is second order arithmetic with ∆1 1comprehension rule.
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
SCHEMATA: THE CONCEPT OF SCHEMA IN THE HISTORY OF LOGIC
"... Abstract. Schemata have played important roles in logic since Aristotle’s Prior Analytics. The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 19 ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. Schemata have played important roles in logic since Aristotle’s Prior Analytics. The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in firstorder number theory where Peano’s secondorder Induction Axiom is approximated by Herbrand’s InductionAxiom Schema [23]. Similarly, in firstorder set theory, Zermelo’s secondorder Separation Axiom is approximated by Fraenkel’s firstorder Separation Schema [17]. In some of several closely related senses, a schema is a complex system having multiple components one of which is a templatetext or schemetemplate, a syntactic string composed of one or more “blanks ” and also possibly significant words and/or symbols. In accordance with a side condition the templatetext of a schema is used as a “template ” to specify a multitude, often infinite, of linguistic expressions such as phrases, sentences, or argumenttexts, called instances of the schema. The side condition is a second component. The collection of instances may
Arithmetic and the Incompleteness Theorems
, 2000
"... this paper please consult me first, via my home page. ..."
Consistency  What's Logic Got to Do with It?
, 1996
"... this paper, I want to explore the origin of the modern conception of the idea of consistency in logic in the work of German mathematician David Hilbert. My interest in the development of the modern idea of consistency arises from my belief that an overriding concern with a strict requirement of cons ..."
Abstract
 Add to MetaCart
this paper, I want to explore the origin of the modern conception of the idea of consistency in logic in the work of German mathematician David Hilbert. My interest in the development of the modern idea of consistency arises from my belief that an overriding concern with a strict requirement of consistency, borrowed primarily from the rigors of modern developments in logic, has prevented latter day twentieth century philosophers from producing philosophical systems of the type produced in earlier times.