Results 1 
3 of
3
The Dimensions of Individual Strings and Sequences
 INFORMATION AND COMPUTATION
, 2003
"... A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary ..."
Abstract

Cited by 93 (10 self)
 Add to MetaCart
A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0, 1]. Sequences that
Correspondence Principles for Effective Dimensions
 In Proceedings of the 29th International Colloquium on Automata, Languages, and Programming
, 2001
"... We show that the classical Hausdorff and constructive dimensions of any union of 1  definable sets of binary sequences are equal. If the union is effective, that is, the set of sequences is 2 definable, then the computable dimension also equals the Hausdorff dimension. This second result is implic ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
We show that the classical Hausdorff and constructive dimensions of any union of 1  definable sets of binary sequences are equal. If the union is effective, that is, the set of sequences is 2 definable, then the computable dimension also equals the Hausdorff dimension. This second result is implicit in the work of Staiger (1998). Staiger also proved related results using entropy rates of decidable languages. We show that Staiger's computable entropy rate provides an equivalent definition of computable dimension. We also prove that a constructive version of Staiger's entropy rate coincides with constructive dimension.
Prediction and Dimension
 Journal of Computer and System Sciences
, 2002
"... Given a set X of sequences over a nite alphabet, we investigate the following three quantities. (i) The feasible predictability of X is the highest success ratio that a polynomialtime randomized predictor can achieve on all sequences in X. ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
Given a set X of sequences over a nite alphabet, we investigate the following three quantities. (i) The feasible predictability of X is the highest success ratio that a polynomialtime randomized predictor can achieve on all sequences in X.