Results 1  10
of
25
Finitely Representable Databases
, 1995
"... : We study classes of infinite but finitely representable databases based on constraints, motivated by new database applications such as geographical databases. We formally define these notions and introduce the concept of query which generalizes queries over classical relational databases. We prove ..."
Abstract

Cited by 55 (8 self)
 Add to MetaCart
: We study classes of infinite but finitely representable databases based on constraints, motivated by new database applications such as geographical databases. We formally define these notions and introduce the concept of query which generalizes queries over classical relational databases. We prove that in this context the basic properties of queries (satisfiability, containment, equivalence, etc.) are nonrecursive. We investigate the theory of finitely representable models and prove that it differs strongly from both classical model theory and finite model theory. In particular, we show that most of the well known theorems of either one fail (compactness, completeness, locality, 0/1 laws, etc.). An immediate consequence is the lack of tools to consider the definability of queries in the relational calculus over finitely representable databases. We illustrate this very challenging problem through some classical examples. We then mainly concentrate on dense order databases, and exhibit...
Computing With FirstOrder Logic
, 1995
"... We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtaine ..."
Abstract

Cited by 53 (13 self)
 Add to MetaCart
We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtained using a powerful normal form for while which shows that each while computation over an unordered domain can be reduced to a while computation over an ordered domain via a fixpoint query. The fixpoint query computes an equivalence relation on tuples which is a congruence with respect to the rest of the computation. The same technique is used to show that equivalence of tuples and structures with respect to FO formulas with bounded number of variables is definable in fixpoint. Generalizing fixpoint and while, we consider more powerful languages which model arbitrary computation interacting with a database using a finite set of FO queries. Such computation is modeled by a relational machine...
New Techniques for Studying Set Languages, Bag Languages and Aggregate Functions
, 1994
"... We provide new techniques for the analysis of the expressive power of query languages for nested collections. These languages may use set or bag semantics and may be further complicated by the presence of aggregate functions. We exhibit certain classes of graphs and prove that the properties of thes ..."
Abstract

Cited by 42 (25 self)
 Add to MetaCart
We provide new techniques for the analysis of the expressive power of query languages for nested collections. These languages may use set or bag semantics and may be further complicated by the presence of aggregate functions. We exhibit certain classes of graphs and prove that the properties of these graphs that can be tested in such languages are either finite or cofinite. This result settles the conjectures of Grumbach, Milo, and Paredaens that parity test, transitive closure, and balanced binary tree test are not expressible in bag languages like the PTIME fragment of BALG of Grumbach and Milo and BQL of Libkin and Wong. Moreover, it implies that many recursive queries, including simple ones like the test for a chain, cannot be expressed in a nested relational language even when aggregate functions are available. In an attempt to generalize the finitecofiniteness result, we study the bounded degree property which says that the number of distinct in and outdegrees in the output of...
New Results on Quantifier Elimination Over Real Closed Fields and Applications to Constraint Databases
 Journal of the ACM
, 1999
"... In this paper we give a new algorithm for quantifier elimination in the first order theory of real closed fields that improves the complexity of the best known algorithm for this problem till now. Unlike previously known algorithms [3, 28, 22] the combinatorial part of the complexity (the part depen ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
In this paper we give a new algorithm for quantifier elimination in the first order theory of real closed fields that improves the complexity of the best known algorithm for this problem till now. Unlike previously known algorithms [3, 28, 22] the combinatorial part of the complexity (the part depending on the number of polynomials in the input) of this new algorithm is independent of the number of free variables. Moreover, under the assumption that each polynomial in the input depend only on a constant number of the free variables, the algebraic part of the complexity (the part depending on the degrees of the input polynomials) can also be made independent of the number of free variables. This new feature of our algorithm allows us to obtain a new algorithm for a variant of the quantifier elimination problem. We give an almost optimal algorithm for this new problem, which we call the uniform quantifier elimination problem. Using the uniform quantifier elimination algorithm, we give a...
Queries with Arithmetical Constraints
 Theoretical Computer Science
, 1997
"... In this paper, we study the expressive power and the complexity of firstorder logic with arithmetic, as a query language over relational and constraint databases. We consider constraints over various domains (N, Z, Q, and R), and with various arithmetical operations (6, +, \Theta, etc.). We first c ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
In this paper, we study the expressive power and the complexity of firstorder logic with arithmetic, as a query language over relational and constraint databases. We consider constraints over various domains (N, Z, Q, and R), and with various arithmetical operations (6, +, \Theta, etc.). We first consider the data complexity of firstorder queries. We prove in particular that linear queries can be evaluated in AC 0 over finite integer databases, and in NC 1 over linear constraint databases. This improves previously known bounds. We also show that over all domains, enough arithmetic lead to arithmetical queries, therefore, showing the frontiers of constraints for database purposes. We then tackle the problem of the expressive power, with the definability of the parity and the connectivity, which are the most classical examples of queries not expressible in firstorder logic over finite structures. We prove that these two queries are firstorder definable in presence of (enough) ari...
A Logical Framework for Integrating Inconsistent Information in Multiple Databases
 IN INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF INFORMATION AND KNOWLEDGE SYSTEMS
, 2002
"... When integrating data coming from multiple different sources we are faced with the possibility of inconsistency in databases. In this paper, we use one of the paraconsistent logics introduced in [9, 7] {\textbf{LFI1}) as a logical framework to model possibly inconsistent database instances obtained ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
When integrating data coming from multiple different sources we are faced with the possibility of inconsistency in databases. In this paper, we use one of the paraconsistent logics introduced in [9, 7] {\textbf{LFI1}) as a logical framework to model possibly inconsistent database instances obtained by integrating different sources. We propose a method based on the sound and complete tableau proof system of \textbf{LFI1} to treat both the integration process and the evolution of the integrated database submitted to users' updates. In order to treat the integrated database evolution, we introduce a kind of generalized database context, the {\em evolutionary databases}, which are databases having the capability of storing and manipulating inconsistent information and, at the same time, allowing integrity constraints to change in time. We argue that our approach is sufficiently general and can be applied in most circumstances where inconsistency may arise in databases.
Verifiable Properties of Database Transactions
 Information and Computation
, 1998
"... ing with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 8690481, or permissions@acm.org. Verifiable Properties of Database T ..."
Abstract

Cited by 19 (8 self)
 Add to MetaCart
ing with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 8690481, or permissions@acm.org. Verifiable Properties of Database Transactions Michael Benedikt Timothy Griffin Leonid Libkin Bell Laboratories 600 Mountain Avenue, Murray Hill NJ 07974, USA email: fbenedikt, griffin, libking@research.att.com Abstract It is often necessary to ensure that database transactions preserve integrity constraints that specify valid database states. While it is possible to monitor for violations of constraints at runtime, rolling back transactions when violations are detected, it is preferable to verify correctness statically, before transactions are executed. This can be accomplished if we can verify transaction safety with respect to a set of constraints by means of calculating weakest preconditions. We study properties o...
A Query Language for NC
 In Proceedings of 13th ACM Symposium on Principles of Database Systems
, 1994
"... We show that a form of divide and conquer recursion on sets together with the relational algebra expresses exactly the queries over ordered relational databases which are NC computable. At a finer level, we relate k nested uses of recursion exactly to AC k , k 1. We also give corresponding resul ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
We show that a form of divide and conquer recursion on sets together with the relational algebra expresses exactly the queries over ordered relational databases which are NC computable. At a finer level, we relate k nested uses of recursion exactly to AC k , k 1. We also give corresponding results for complex objects. 1 Introduction NC is the complexity class of functions that are computable in polylogarithmic time with polynomially many processors on a parallel random access machine (PRAM). The query language for NC discussed here is centered around a form of divide and conquer recursion (dcr ) on finite sets which has obvious potential for parallel evaluation and can easily express, for example, transitive closure and parity. Divide and conquer with parameters e; f; u defines the unique function ', notation dcr (e; f; u), taking finite sets as arguments, such that: '(;) def = e '(fyg) def = f(y) '(s 1 [ s 2 ) def = u('(s 1 ); '(s 2 )) when s 1 " s 2 = ; For parity, we t...