Results 1  10
of
42
A search engine for 3d models
 ACM Transactions on Graphics
, 2003
"... As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional textbased search techniques are not always effective for 3D data. In this paper, we investigate new shapebased search methods. The key challen ..."
Abstract

Cited by 300 (22 self)
 Add to MetaCart
As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional textbased search techniques are not always effective for 3D data. In this paper, we investigate new shapebased search methods. The key challenges are to develop query methods simple enough for novice users and matching algorithms robust enough to work for arbitrary polygonal models. We present a webbased search engine system that supports queries based on 3D sketches, 2D sketches, 3D
Point Set Surfaces
, 2001
"... We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We pre ..."
Abstract

Cited by 292 (41 self)
 Add to MetaCart
We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We present tools to increase or decrease the density of the points, thus, allowing an adjustment of the spacing among the points to control the fidelity of the representation. To display the point set surface, we introduce a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality shading effects and smooth silhouettes at interactive frame rates.
Shape Distributions
 ACM Transactions on Graphics
, 2002
"... this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The pr ..."
Abstract

Cited by 274 (2 self)
 Add to MetaCart
(Show Context)
this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence, or model fitting
Computing and rendering point set surfaces
 IEEE Transactions on Visualization and Computer Graphics
"... ..."
(Show Context)
Matching 3D Models with Shape Distributions
"... Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer vision, molecular biology, computer graphics, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, whi ..."
Abstract

Cited by 212 (7 self)
 Add to MetaCart
Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer vision, molecular biology, computer graphics, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, while still discriminating between similar and dissimilar shapes. In this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is a simpler problem than the comparison of 3D surfaces by traditional shape matching methods that require pose registration, feature correspondence, or model fitting. We find that the dissimilarities be...
Multiresolution modeling: Survey & future opportunities
 Proc. of the Eurographics ’99 – State of the Art Reports
, 1999
"... ..."
G.: Simplification and repair of polygonal models using volumetric techniques
 IEEE Transactions on Visualization and Computer Graphics
, 2003
"... Abstract—Two important tools for manipulating polygonal models are simplification and repair and we present voxelbased methods for performing both of these tasks. We describe a method for converting polygonal models to a volumetric representation in a way that handles models with holes, double wall ..."
Abstract

Cited by 116 (3 self)
 Add to MetaCart
(Show Context)
Abstract—Two important tools for manipulating polygonal models are simplification and repair and we present voxelbased methods for performing both of these tasks. We describe a method for converting polygonal models to a volumetric representation in a way that handles models with holes, double walls, and intersecting parts. This allows us to perform polygon model repair simply by converting a model to and from the volumetric domain. We also describe a new topologyaltering simplification method that is based on 3D morphological operators. Visually unimportant features such as tubes and holes may be eliminated from a model by the open and close morphological operators. Our simplification approach accepts polygonal models as input, scan converts these to create a volumetric description, performs topology modification, and then converts the results back to polygons. We then apply a topologypreserving polygon simplification technique to produce a final model. Our simplification method produces results that are everywhere manifold. Index Terms—Mesh simplification, mesh repair, volumetric models, morphological operators. æ 1
Folding meshes: Hierarchical mesh segmentation based on planar symmetry
, 2006
"... Meshes representing real world objects, both artistcreated and scanned, contain a high level of redundancy due to (possibly approximate) planar reflection symmetries, either global or localized to different subregions. An algorithm is presented for detecting such symmetries and segmenting the mes ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
Meshes representing real world objects, both artistcreated and scanned, contain a high level of redundancy due to (possibly approximate) planar reflection symmetries, either global or localized to different subregions. An algorithm is presented for detecting such symmetries and segmenting the mesh into the symmetric and remaining regions. The method, inspired by techniques in Computer Vision, has foundations in robust statistics and is resilient to structured outliers which are present in the form of the non symmetric regions of the data. Also introduced is an application of the method: the folding tree data structure. The structure encodes the non redundant regions of the original mesh as well as the reflection planes and is created by the recursive application of the detection method. This structure
Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker
 Journal of Computational Geometry, Theory and Applications
, 1999
"... The Edgebreaker compression (Rossignac, 1999; King and Rossignac, 1999) is guaranteed to encode any unlabeled triangulated planar graph of t triangles with at most 1.84t bits. It stores the graph as a CLERS string a sequence of t symbols from the set {C, L,E,R,S}, each represented by a 1, 2 or ..."
Abstract

Cited by 42 (14 self)
 Add to MetaCart
(Show Context)
The Edgebreaker compression (Rossignac, 1999; King and Rossignac, 1999) is guaranteed to encode any unlabeled triangulated planar graph of t triangles with at most 1.84t bits. It stores the graph as a CLERS string a sequence of t symbols from the set {C, L,E,R,S}, each represented by a 1, 2 or 3 bit code. We show here that, in practice, the string can be further compressed to between 0.91t and 1.26t bits using an entropy code. These results improve over the 2.3t bits code proposed by Keeler and Westbrook (1995) and over the various 3D triangle mesh compression techniques published recently (Gumhold and Strasser, 1998; Itai and Rodeh, 1982; Naor, 1990; Touma and Gotsman, 1988; Turan, 1984), which exhibit either larger constants or cannot guarantee a linear worst case storage complexity. The decompression proposed by Rossignac (1999) is complicated and exhibits a nonlinear time complexity. The main contribution reported here is a simpler and efficient decompression algorithm, calle...