Results 1  10
of
15
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 189 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Logical Depth and Physical Complexity
 THE UNIVERSAL TURING MACHINE: A HALFCENTURY SURVEY
, 1988
"... Some mathematical and natural objects (a random sequence, a sequence of zeros, a perfect crystal, a gas) are intuitively trivial, while others (e.g. the human body, the digits of #) contain internal evidence of a nontrivial causal history. We formalize this ..."
Abstract

Cited by 49 (0 self)
 Add to MetaCart
Some mathematical and natural objects (a random sequence, a sequence of zeros, a perfect crystal, a gas) are intuitively trivial, while others (e.g. the human body, the digits of #) contain internal evidence of a nontrivial causal history. We formalize this
The Role of Relativization in Complexity Theory
 Bulletin of the European Association for Theoretical Computer Science
, 1994
"... Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and progr ..."
Abstract

Cited by 42 (9 self)
 Add to MetaCart
Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and program checking results and try to understand why they do not relativize. We give some new results that may help us to understand these questions better.
The Isomorphism Conjecture Fails Relative to a Random Oracle
 J. ACM
, 1996
"... Berman and Hartmanis [BH77] conjectured that there is a polynomialtime computable isomorphism between any two languages complete for NP with respect to polynomialtime computable manyone (Karp) reductions. Joseph and Young [JY85] gave a structural definition of a class of NPcomplete setsthe kc ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
Berman and Hartmanis [BH77] conjectured that there is a polynomialtime computable isomorphism between any two languages complete for NP with respect to polynomialtime computable manyone (Karp) reductions. Joseph and Young [JY85] gave a structural definition of a class of NPcomplete setsthe kcreative setsand defined a class of sets (the K k f 's) that are necessarily kcreative. They went on to conjecture that certain of these K k f 's are not isomorphic to the standard NPcomplete sets. Clearly, the BermanHartmanis and JosephYoung conjectures cannot both be correct. We introduce a family of strong oneway functions, the scrambling functions. If f is a scrambling function, then K k f is not isomorphic to the standard NPcomplete sets, as Joseph and Young conjectured, and the BermanHartmanis conjecture fails. Indeed, if scrambling functions exist, then the isomorphism also fails at higher complexity classes such as EXP and NEXP. As evidence for the existence of scramb...
Hierarchies Of Generalized Kolmogorov Complexities And Nonenumerable Universal Measures Computable In The Limit
 INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE
, 2000
"... The traditional theory of Kolmogorov complexity and algorithmic probability focuses on monotone Turing machines with oneway writeonly output tape. This naturally leads to the universal enumerable SolomonoLevin measure. Here we introduce more general, nonenumerable but cumulatively enumerable m ..."
Abstract

Cited by 38 (20 self)
 Add to MetaCart
The traditional theory of Kolmogorov complexity and algorithmic probability focuses on monotone Turing machines with oneway writeonly output tape. This naturally leads to the universal enumerable SolomonoLevin measure. Here we introduce more general, nonenumerable but cumulatively enumerable measures (CEMs) derived from Turing machines with lexicographically nondecreasing output and random input, and even more general approximable measures and distributions computable in the limit. We obtain a natural hierarchy of generalizations of algorithmic probability and Kolmogorov complexity, suggesting that the "true" information content of some (possibly in nite) bitstring x is the size of the shortest nonhalting program that converges to x and nothing but x on a Turing machine that can edit its previous outputs. Among other things we show that there are objects computable in the limit yet more random than Chaitin's "number of wisdom" Omega, that any approximable measure of x is small for any x lacking a short description, that there is no universal approximable distribution, that there is a universal CEM, and that any nonenumerable CEM of x is small for any x lacking a short enumerating program. We briey mention consequences for universes sampled from such priors.
NPhard Sets are PSuperterse Unless R = NP
, 1992
"... A set A is pterse (psuperterse) if, for all q, it is not possible to answer q queries to A by making only q \Gamma 1 queries to A (any set X). Formally, let PF A qtt be the class of functions reducible to A via a polynomialtime truthtable reduction of norm q, and let PF A qT be the class of ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
A set A is pterse (psuperterse) if, for all q, it is not possible to answer q queries to A by making only q \Gamma 1 queries to A (any set X). Formally, let PF A qtt be the class of functions reducible to A via a polynomialtime truthtable reduction of norm q, and let PF A qT be the class of functions reducible to A via a polynomialtime Turing reduction that makes at most q queries. A set A is pterse if PF A qtt 6` PF A (q\Gamma1)T for all constants q. A is psuperterse if PF A qtt 6` PF X qT for all constants q and sets X . We show that all NPhard sets (under p tt reductions) are psuperterse, unless it is possible to distinguish uniquely satisfiable formulas from satisfiable formulas in polynomial time. Consequently, all NPcomplete sets are psuperterse unless P = UP (oneway functions fail to exist), R = NP (there exist randomized polynomialtime algorithms for all problems in NP), and the polynomialtime hierarchy collapses. This mostly solves the main open...
The random oracle hypothesis is false
, 1990
"... The Random Oracle Hypothesis, attributed to Bennett and Gill, essentially states that the relationships between complexity classes which holdforalmost all relativized worlds must also hold in the unrelativized case. Although this paper is not the rst to provideacounterexample to the Random Oracle Hy ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
The Random Oracle Hypothesis, attributed to Bennett and Gill, essentially states that the relationships between complexity classes which holdforalmost all relativized worlds must also hold in the unrelativized case. Although this paper is not the rst to provideacounterexample to the Random Oracle Hypothesis, it does provide a most compelling counterexample by showing that for almost all oracles A, IP A 6=PSPACE A. If the Random Oracle Hypothesis were true, it would contradict Shamir's result that IP = PSPACE. In fact, it is shown that for almost all oracles A, coNP A 6 IP A. These results extend to the multiprover proof systems of BenOr, Goldwasser, Kilian and Wigderson. In addition, this paper shows that the Random Oracle Hypothesis is sensitive to small changes in the de nition. A class IPP, similar to IP, is de ned. Surprisingly, the IPP = PSPACE result holds for all oracle worlds. Warning: Essentially this paper has been published in Information and Computation and is hence subject to copyright restrictions. It is for personal use only. 1
Relative to a random oracle, NP is not small
 In Proc. 9th Structures
, 1994
"... Resourcebounded measure as originated by Lutz is an extension of classical measure theory which provides a probabilistic means of describing the relative sizes of complexity classes. Lutz has proposed the hypothesis that NP does not have pmeasure zero, meaning loosely that NP contains a nonneglig ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
Resourcebounded measure as originated by Lutz is an extension of classical measure theory which provides a probabilistic means of describing the relative sizes of complexity classes. Lutz has proposed the hypothesis that NP does not have pmeasure zero, meaning loosely that NP contains a nonnegligible subset of exponential time. This hypothesis implies a strong separation of P from NP and is supported by a growing body of plausible consequences which are not known to follow from the weaker assertion P ̸ = NP. It is shown in this paper that relative to a random oracle, NP does not have pmeasure zero. The proof exploits the following independence property of algorithmically random sequences: if A is an algorithmically random sequence and a subsequence A0 is chosen by means of a bounded KolmogorovLoveland
Applications of TimeBounded Kolmogorov Complexity in Complexity Theory
 Kolmogorov complexity and computational complexity
, 1992
"... This paper presents one method of using timebounded Kolmogorov complexity as a measure of the complexity of sets, and outlines anumber of applications of this approach to di#erent questions in complexity theory. Connections will be drawn among the following topics: NE predicates, ranking functi ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
This paper presents one method of using timebounded Kolmogorov complexity as a measure of the complexity of sets, and outlines anumber of applications of this approach to di#erent questions in complexity theory. Connections will be drawn among the following topics: NE predicates, ranking functions, pseudorandom generators, and hierarchy theorems in circuit complexity.
Circuit size relative to pseudorandom oracles, Theoretical Computer Science A 107
, 1993
"... Circuitsize complexity is compared with deterministic and nondeterministic time complexity in the presence of pseudorandom oracles. The following separations are shown to hold relative to every pspacerandom oracle A, and relative toalmost every oracle A 2 ESPACE. (i) NP A is not contained in SIZE ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Circuitsize complexity is compared with deterministic and nondeterministic time complexity in the presence of pseudorandom oracles. The following separations are shown to hold relative to every pspacerandom oracle A, and relative toalmost every oracle A 2 ESPACE. (i) NP A is not contained in SIZE A (2 n)foranyreal < 1 3. (ii) E A is not contained in SIZE A ( 2n n). Thus, neither NP A nor E A is contained in P A /Poly. In fact, these separations are shown to hold for almost every n. Since a randomly selected oracle is pspacerandom with probability one, (i) and (ii) immediately imply the corresponding random oracle separations, thus improving a result of Bennett and Gill [9] and answering open questions of Wilson [47]. 1