Results 1  10
of
212
A New Efficient Algorithm for Computing Gröbner Bases (F4)
 IN: ISSAC ’02: PROCEEDINGS OF THE 2002 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION
, 2002
"... This paper introduces a new efficient algorithm for computing Gröbner bases. To avoid as much as possible intermediate computation, the algorithm computes successive truncated Gröbner bases and it replaces the classical polynomial reduction found in the Buchberger algorithm by the simultaneous reduc ..."
Abstract

Cited by 248 (53 self)
 Add to MetaCart
This paper introduces a new efficient algorithm for computing Gröbner bases. To avoid as much as possible intermediate computation, the algorithm computes successive truncated Gröbner bases and it replaces the classical polynomial reduction found in the Buchberger algorithm by the simultaneous reduction of several polynomials. This powerful reduction mechanism is achieved by means of a symbolic precomputation and by extensive use of sparse linear algebra methods. Current techniques in linear algebra used in Computer Algebra are reviewed together with other methods coming from the numerical field. Some previously untractable problems (Cyclic 9) are presented as well as an empirical comparison of a first implementation of this algorithm with other well known programs. This comparison pays careful attention to methodology issues. All the benchmarks and CPU times used in this paper are frequently updated and available on a Web page. Even though the new algorithm does not improve the worst case complexity it is several times faster than previous implementations both for integers and modulo computations.
Algebraic Attacks on Stream Ciphers with Linear Feedback
, 2003
"... A classical construction of stream ciphers is to combine several LFSRs and a highly nonlinear Boolean function f . Their security is usually studied in terms of correlation attacks, that can be seen as solving a system of multivariate linear equations, true with some probability. At ICISC'02 thi ..."
Abstract

Cited by 202 (22 self)
 Add to MetaCart
A classical construction of stream ciphers is to combine several LFSRs and a highly nonlinear Boolean function f . Their security is usually studied in terms of correlation attacks, that can be seen as solving a system of multivariate linear equations, true with some probability. At ICISC'02 this approach is extended to systems of higherdegree multivariate equations, and gives an attack in 2 for Toyocrypt, a Cryptrec submission.
A fuzzy vault scheme
 In International Symposium on Information Theory (ISIT
, 2002
"... Abstract. We describe a simple and novel cryptographic construction that we refer to as a fuzzy vault. A player Alice may place a secret value κ in a fuzzy vault and “lock ” it using a set A of elements from some public universe U. If Bob tries to “unlock ” the vault using a set B of similar length, ..."
Abstract

Cited by 183 (1 self)
 Add to MetaCart
Abstract. We describe a simple and novel cryptographic construction that we refer to as a fuzzy vault. A player Alice may place a secret value κ in a fuzzy vault and “lock ” it using a set A of elements from some public universe U. If Bob tries to “unlock ” the vault using a set B of similar length, he obtains κ only if B is close to A, i.e., only if A and B overlap substantially. In constrast to previous constructions of this flavor, ours possesses the useful feature of order invariance, meaning that the ordering of A and B is immaterial to the functioning of the vault. As we show, our scheme enjoys provable security against a computationally unbounded attacker.
Applications of ErrorControl Coding
, 1998
"... An overview of the many practical applications of channel coding theory in the past 50 years is presented. The following application areas are included: deep space communication, satellite communication, data transmission, data storage, mobile communication, file transfer, and digital audio/video t ..."
Abstract

Cited by 165 (0 self)
 Add to MetaCart
An overview of the many practical applications of channel coding theory in the past 50 years is presented. The following application areas are included: deep space communication, satellite communication, data transmission, data storage, mobile communication, file transfer, and digital audio/video transmission. Examples, both historical and current, are given that typify the different approaches used in each application area. Although no attempt is made to be comprehensive in our coverage, the examples chosen clearly illustrate the richness, variety, and importance of errorcontrol coding methods in modern digital applications.
A Survey of PacketLoss Recovery Techniques for Streaming Audio
 IEEE Network
, 1998
"... We survey a number of packetloss recovery techniques for streaming audio applications operating using IP multicast. We begin with a discussion of the loss and delay characteristics of an IP multicast channel and from this show the need for packet loss recovery. Recovery techniques may be divided in ..."
Abstract

Cited by 152 (6 self)
 Add to MetaCart
We survey a number of packetloss recovery techniques for streaming audio applications operating using IP multicast. We begin with a discussion of the loss and delay characteristics of an IP multicast channel and from this show the need for packet loss recovery. Recovery techniques may be divided into two classes: senderand receiverbased. We compare and contrast several senderbased recovery schemes: forward error correction (both media specific and media independent) interleaving and retransmission. In addition a number of error concealment schemes are discussed. We conclude with a series of recommendations for repair schemes to be used, based on application requirements and network conditions. 1 Introduction The development of IP multicast and the Internet multicast backbone has led to be emergence of a new class of scalable audio/video conferencing applications. These are based on the lightweight sessions model [11, 17] and provide efficient multiway communication which scales fr...
Random number generation
"... Random numbers are the nuts and bolts of simulation. Typically, all the randomness required by the model is simulated by a random number generator whose output is assumed to be a sequence of independent and identically distributed (IID) U(0, 1) random variables (i.e., continuous random variables dis ..."
Abstract

Cited by 136 (30 self)
 Add to MetaCart
Random numbers are the nuts and bolts of simulation. Typically, all the randomness required by the model is simulated by a random number generator whose output is assumed to be a sequence of independent and identically distributed (IID) U(0, 1) random variables (i.e., continuous random variables distributed uniformly over the interval
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
Solving Large Sparse Linear Systems Over Finite Fields
, 1991
"... Many of the fast methods for factoring integers and computing discrete logarithms require the solution of large sparse linear systems of equations over finite fields. This paper presents the results of implementations of several linear algebra algorithms. It shows that very large sparse systems can ..."
Abstract

Cited by 72 (2 self)
 Add to MetaCart
Many of the fast methods for factoring integers and computing discrete logarithms require the solution of large sparse linear systems of equations over finite fields. This paper presents the results of implementations of several linear algebra algorithms. It shows that very large sparse systems can be solved efficiently by using combinations of structured Gaussian elimination and the conjugate gradient, Lanczos, and Wiedemann methods. 1. Introduction Factoring integers and computing discrete logarithms often requires solving large systems of linear equations over finite fields. General surveys of these areas are presented in [14, 17, 19]. So far there have been few implementations of discrete logarithm algorithms, but many of integer factoring methods. Some of the published results have involved solving systems of over 6 \Theta 10 4 equations in more than 6 \Theta 10 4 variables [12]. In factoring, equations have had to be solved over the field GF (2). In that situation, ordinary...
Subquadratictime factoring of polynomials over finite fields
 Math. Comp
, 1998
"... Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast ..."
Abstract

Cited by 67 (11 self)
 Add to MetaCart
Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast matrix multiplication techniques. More generally, to factor a polynomial of degree n over the finite field Fq with q elements, the algorithms use O(n 1.815 log q) arithmetic operations in Fq. The new “baby step/giant step ” techniques used in our algorithms also yield new fast practical algorithms at superquadratic asymptotic running time, and subquadratictime methods for manipulating normal bases of finite fields. 1.