Results 1  10
of
17
Games and Full Completeness for Multiplicative Linear Logic
 JOURNAL OF SYMBOLIC LOGIC
, 1994
"... We present a game semantics for Linear Logic, in which formulas denote games and proofs denote winning strategies. We show that our semantics yields a categorical model of Linear Logic and prove full completeness for Multiplicative Linear Logic with the MIX rule: every winning strategy is the den ..."
Abstract

Cited by 209 (26 self)
 Add to MetaCart
We present a game semantics for Linear Logic, in which formulas denote games and proofs denote winning strategies. We show that our semantics yields a categorical model of Linear Logic and prove full completeness for Multiplicative Linear Logic with the MIX rule: every winning strategy is the denotation of a unique cutfree proof net. A key role is played by the notion of historyfree strategy; strong connections are made between historyfree strategies and the Geometry of Interaction. Our semantics incorporates a natural notion of polarity, leading to a refined treatment of the additives. We make comparisons with related work by Joyal, Blass et al.
Term Assignment for Intuitionistic Linear Logic
, 1992
"... In this paper we consider the problem of deriving a term assignment system for Girard's Intuitionistic Linear Logic for both the sequent calculus and natural deduction proof systems. Our system differs from previous calculi (e.g. that of Abramsky) and has two important properties which they lack. Th ..."
Abstract

Cited by 53 (9 self)
 Add to MetaCart
In this paper we consider the problem of deriving a term assignment system for Girard's Intuitionistic Linear Logic for both the sequent calculus and natural deduction proof systems. Our system differs from previous calculi (e.g. that of Abramsky) and has two important properties which they lack. These are the substitution property (the set of valid deductions is closed under substitution) and subject reduction (reduction on terms is welltyped). We define a simple (but more general than previous proposals) categorical model for Intuitionistic Linear Logic and show how this can be used to derive the term assignment system. We also consider term reduction arising from cutelimination in the sequent calculus and normalisation in natural deduction. We explore the relationship between these, as well as with the equations which follow from our categorical model.
Applications of Linear Logic to Computation: An Overview
, 1993
"... This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, li ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, like semantics of negation in LP, nonmonotonic issues in AI planning, etc. Although the overview covers pretty much the stateoftheart in this area, by necessity many of the works are only mentioned and referenced, but not discussed in any considerable detail. The paper does not presuppose any previous exposition to LL, and is addressed more to computer scientists (probably with a theoretical inclination) than to logicians. The paper contains over 140 references, of which some 80 are about applications of LL. 1 Linear Logic Linear Logic (LL) was introduced in 1987 by Girard [62]. From the very beginning it was recognized as relevant to issues of computation (especially concurrency and stat...
Linear lambdaCalculus and Categorical Models Revisited
, 1992
"... this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig. 1. We us ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig. 1. We use capital Greek letters \Gamma; \Delta for sequences of formulae and A; B for single formulae. The Exchange rule simply allows the permutation of assumptions. The `! rules' have been given names by other authors. ! L\Gamma1 is called Weakening , ! L\Gamma2 Contraction, ! L\Gamma3 Dereliction and (! R ) Promotion
Chu Spaces as a Semantic Bridge Between Linear Logic and Mathematics
 Theoretical Computer Science
, 1998
"... The motivating role of linear logic is as a "logic behind logic." We propose a sibling role for it as a logic of transformational mathematics via the selfdual category of Chu spaces, a generalization of topological spaces. These create a bridge between linear logic and mathematics by soundly interp ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
The motivating role of linear logic is as a "logic behind logic." We propose a sibling role for it as a logic of transformational mathematics via the selfdual category of Chu spaces, a generalization of topological spaces. These create a bridge between linear logic and mathematics by soundly interpreting linear logic while fully and concretely embedding a comprehensive range of concrete categories of mathematics. Our main goal is to treat each end of this bridge in expository detail. In addition we introduce the dialectic lambdacalculus, and show that dinaturality semantics is not fully complete for the Chu interpretation of linear logic. 1 Introduction Linear logic was introduced by J.Y. Girard as a "logic behind logic." It separates logical reasoning into a core linear part in which formulas are merely moved around, and an auxiliary nonlinear part in which formulas may be deleted and copied. The core, multiplicative linear logic (MLL), is a substructural logic whose basic connect...
Chu spaces: Complementarity and Uncertainty in Rational Mechanics
, 1994
"... this paper will be realizations. The category of Boolean operations and their propertypreserving renamings is not selfdual since nonT 0 Chu spaces transpose to nonextensional ones. By the same reasoning the full subcategory consisting of T 0 operations, those with no properties a j b for distinct ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
this paper will be realizations. The category of Boolean operations and their propertypreserving renamings is not selfdual since nonT 0 Chu spaces transpose to nonextensional ones. By the same reasoning the full subcategory consisting of T 0 operations, those with no properties a j b for distinct variables a; b, is selfdual. This is a very important fact: it means that to every full subcategory C of this selfdual category we may associate its dual as the image of C under the selfduality. This associates sets to complete atomic Boolean algebras, Boolean algebras to Stone spaces, distributive lattices to StonePriestley posets, semilattices to algebraic lattices, complete semilattices to themselves, and so on for many other familiar [Joh82] and not so familiar (selfduality of finitedimensional vector spaces over GF (2)) instances of Stone duality We now illustrate the general idea with some examples.
Towards Semantics of SelfAdaptive Software
, 2000
"... When people perform computations, they routinely monitor their results, and try to adapt and improve their algorithms when a need arises. The idea of selfadaptive software is to implement this common facility of human mind within the framework of the standard logical methods of software engineering ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
When people perform computations, they routinely monitor their results, and try to adapt and improve their algorithms when a need arises. The idea of selfadaptive software is to implement this common facility of human mind within the framework of the standard logical methods of software engineering. The ubiquitous practice of testing, debugging and improving programs at the design time should be automated, and established as a continuing run time routine. Technically, the task thus requires combining functionalities of automated software development tools and of runtime environments. Such combinations lead not just to challenging engineering problems, but also to novel theoretical questions. Formal methods are needed, and the standard techniques do not suffice. As a first contribution in this direction, we present a basic mathematical framework suitable for describing selfadaptive software at a high level of semantical abstraction. A static view leads to a structure akin...
A Formulation of Linear Logic Based on DependencyRelations
 In Proc. of Computer Science Logic '97, Lecture Notes in Computer Science
, 1997
"... In this paper we describe a solution to the problem of proving cutelimination for FILL, a variant of exponentialfree and multiplicative Linear Logic originally introduced by Hyland and de Paiva. In the work of Hyland and de Paiva, a term assignment system is used to describe the intuitionistic cha ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
In this paper we describe a solution to the problem of proving cutelimination for FILL, a variant of exponentialfree and multiplicative Linear Logic originally introduced by Hyland and de Paiva. In the work of Hyland and de Paiva, a term assignment system is used to describe the intuitionistic character of FILL and a proof of cutelimination is barely sketched. In the present paper, as well as correcting a small mistake in their work and extending the system to deal with exponentials, we introduce a different formal system describing the intuitionistic character of FILL and we provide a full proof of the cutelimination theorem. The formal system is based on a dependencyrelation between formulae occurrences within a given proof and seems of independent interest. The procedure for cutelimination applies to (multiplicative and exponential) Classical Linear Logic, and we can (with care) restrict our attention to the subsystem FILL. The proof, as usual with cutelimination proofs, is...
Chu’s Construction: A Prooftheoretic Approach
 LOGIC FOR CONCURRENCY AND SYNCHRONISATION”, KLUWER TRENDS IN LOGIC N.18, 2003, PP.93114. LAMBDA CALCULUS 37
, 2001
"... ..."