Results 1  10
of
28
Games and Full Completeness for Multiplicative Linear Logic
 JOURNAL OF SYMBOLIC LOGIC
, 1994
"... We present a game semantics for Linear Logic, in which formulas denote games and proofs denote winning strategies. We show that our semantics yields a categorical model of Linear Logic and prove full completeness for Multiplicative Linear Logic with the MIX rule: every winning strategy is the den ..."
Abstract

Cited by 215 (26 self)
 Add to MetaCart
We present a game semantics for Linear Logic, in which formulas denote games and proofs denote winning strategies. We show that our semantics yields a categorical model of Linear Logic and prove full completeness for Multiplicative Linear Logic with the MIX rule: every winning strategy is the denotation of a unique cutfree proof net. A key role is played by the notion of historyfree strategy; strong connections are made between historyfree strategies and the Geometry of Interaction. Our semantics incorporates a natural notion of polarity, leading to a refined treatment of the additives. We make comparisons with related work by Joyal, Blass et al.
A Brief Guide to Linear Logic
, 1993
"... An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation. ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation.
Nuclear and Trace Ideals in Tensored *Categories
, 1998
"... We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The comp ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed structure associated with the category of relations does not generalize directly, instead one obtains nuclear ideals. Most tensored categories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact closed tensored categories, all morphisms are nuclear, and in the tensored category of Hilbert spaces, the nuclear morphisms are the HilbertSchmidt maps. We also introduce two new examples of tensored categories, in which integration plays the role of composition. In the first, mor...
Exploring the gap between linear and classical logic
 Theory and Applications of Categories, 18:473–535
, 2006
"... Abstract. The Medial rule was first devised as a deduction rule in the Calculus of Structures. In this paper we explore it from the point of view of category theory, as additional structure on a ∗autonomous category. This gives us some insights on the denotational semantics of classical proposition ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
(Show Context)
Abstract. The Medial rule was first devised as a deduction rule in the Calculus of Structures. In this paper we explore it from the point of view of category theory, as additional structure on a ∗autonomous category. This gives us some insights on the denotational semantics of classical propositional logic, and allows us to construct new models for it, based on suitable generalizations of the theory of coherence spaces. 1.
Specification Structures and PropositionsasTypes for Concurrency
 Logics for Concurrency: Structure vs. AutomataProceedings of the VIIIth Banff Higher Order Workshop, volume 1043 of Lecture Notes in Computer Science
, 1995
"... Many different notions of "property of interest" and methods of verifying such properties arise naturally in programming. A general framework of "Specification Structures" is presented for combining different notions and methods in a coherent fashion. This is then applied to c ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
(Show Context)
Many different notions of "property of interest" and methods of verifying such properties arise naturally in programming. A general framework of "Specification Structures" is presented for combining different notions and methods in a coherent fashion. This is then applied to concurrency in the setting of Interaction Categories.
L.: Constructing free Boolean categories
, 2005
"... By Boolean category we mean something which is to a Boolean algebra what a category is to a poset. We propose an axiomatic system for Boolean categories, which is different in several respects from the ones proposed recently. In particular everything is done from the start in a *autonomous category ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
(Show Context)
By Boolean category we mean something which is to a Boolean algebra what a category is to a poset. We propose an axiomatic system for Boolean categories, which is different in several respects from the ones proposed recently. In particular everything is done from the start in a *autonomous category and not in a weakly distributive one, which simplifies issues like the Mix rule. An important axiom, which is introduced later, is a “graphical ” condition, which is closely related to denotational semantics and the Geometry of Interaction. Then we show that a previously
Discrete Quantum Causal Dynamics
 International Journal of Theoretical Physics
, 2003
"... We give a mathematical framework to describe the evolution of an open quantum systems subjected to nitely many interactions with classical apparatuses. The systems in question may be composed of distinct, spatially separated subsystems which evolve independently but may also interact. This evolut ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
We give a mathematical framework to describe the evolution of an open quantum systems subjected to nitely many interactions with classical apparatuses. The systems in question may be composed of distinct, spatially separated subsystems which evolve independently but may also interact. This evolution, driven both by unitary operators and measurements, is coded in a precise mathematical structure in such a way that the crucial properties of causality, covariance and entanglement are faithfully represented. We show how our framework may be expressed using the language of (poly)categories and functors. Remarkably, important physical consequences  such as covariance  follow directly from the functoriality of our axioms. We establish strong links between the physical picture we propose and linear logic. Specifically we show that the rened logical connectives of linear logic can be used to describe the entanglements of subsystems in a precise way. Furthermore, we show that there is a precise correspondence between the evolution of a given system and deductions in a certain formal logical system based on the rules of linear logic. This framework generalizes and enriches both causal posets and the histories approach to quantum mechanics. 1
Category theory for linear logicians
 Linear Logic in Computer Science
, 2004
"... This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categori ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoidal closed, linearly distributive and ∗autonomous categories and their relation to multiplicative linear logic. We examine nonsymmetric monoidal categories, and consider them as models of noncommutative linear logic. We introduce traced monoidal categories, and discuss their relation to the geometry of interaction. The necessary aspects of the theory of monads is introduced in order to describe the categorical modelling of the exponentials. We conclude by briefly describing the notion of full completeness, a strong form of categorical completeness, which originated in the categorical model theory of linear logic. No knowledge of category theory is assumed, but we do assume knowledge of linear logic sequent calculus and the standard models of linear logic, and modest familiarity with typed lambda calculus. 0
The Logic of Linear Functors
 Math. Structures Comput. Sci
, 2002
"... This paper describes a family of logics whose categorical semantics is based on functors with structure rather than on categories with structure. This allows the consideration of logics which contain possibly distinct logical subsystems whose interactions are mediated by functorial mappings. For exa ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
This paper describes a family of logics whose categorical semantics is based on functors with structure rather than on categories with structure. This allows the consideration of logics which contain possibly distinct logical subsystems whose interactions are mediated by functorial mappings. For example, within one unified framework, we shall be able to handle logics as diverse as modal logic, ordinary linear logic, and the "noncommutative logic" of Abrusci and Ruet, a variant of linear logic which has both commutative and noncommutative connectives. Although this paper will not consider in depth the categorical basis of this approach to logic, preferring instead to emphasize the syntactic novelties that it generates in the logic, we shall focus on the particular case when the logics are based on a linear functor, to give a definite presentation of these ideas. However, it will be clear that this approach to logic has considerable generality. There have been several individu...