Results 1 
3 of
3
TimeSpace Tradeoffs for Branching Programs
, 1999
"... We obtain the first nontrivial timespace tradeoff lower bound for functions f : {0, 1}^n → {0, 1} on general branching programs by exhibiting a Boolean function f that requires exponential size to be computed by any branching program of length (1 + ε)n, for some constant ε > 0 ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
We obtain the first nontrivial timespace tradeoff lower bound for functions f : {0, 1}^n → {0, 1} on general branching programs by exhibiting a Boolean function f that requires exponential size to be computed by any branching program of length (1 + ε)n, for some constant ε > 0. We also give the first separation result between the syntactic and semantic readk models [BRS93] for k > 1 by showing that polynomialsize semantic readtwice branching programs can compute functions that require exponential size on any syntactic readk branching program. We also show...
Quantum and Classical Strong Direct Product Theorems and Optimal TimeSpace Tradeoffs
 SIAM Journal on Computing
, 2004
"... A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum ..."
Abstract

Cited by 42 (7 self)
 Add to MetaCart
A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum query complexity of the OR function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing k instances of the Disjointness function. Our direct product theorems...
SuperLinear TimeSpace Tradeoff Lower Bounds for Randomized Computation
, 2000
"... We prove the first timespace lower bound tradeoffs for randomized computation of decision problems. The bounds hold even in the case that the computation is allowed to have arbitrary probability of error on a small fraction of inputs. Our techniques are an extension of those used by Ajtai [Ajt99a, ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
We prove the first timespace lower bound tradeoffs for randomized computation of decision problems. The bounds hold even in the case that the computation is allowed to have arbitrary probability of error on a small fraction of inputs. Our techniques are an extension of those used by Ajtai [Ajt99a, Ajt99b] in his timespace tradeoffs for deterministic RAM algorithms computing element distinctness and for Boolean branching programs computing a natural quadratic form. Ajtai's bounds were of the following form...