Results 1  10
of
61
Quantum computing, postselection, and probabilistic polynomialtime
, 2004
"... I study the class of problems efficiently solvable by a quantum computer, given the ability to “postselect” on the outcomes of measurements. I prove that this class coincides with a classical complexity class called PP, or Probabilistic PolynomialTime. Using this result, I show that several simple ..."
Abstract

Cited by 70 (14 self)
 Add to MetaCart
(Show Context)
I study the class of problems efficiently solvable by a quantum computer, given the ability to “postselect” on the outcomes of measurements. I prove that this class coincides with a classical complexity class called PP, or Probabilistic PolynomialTime. Using this result, I show that several simple changes to the axioms of quantum mechanics would let us solve PPcomplete problems efficiently. The result also implies, as an easy corollary, a celebrated theorem of Beigel, Reingold, and Spielman that PP is closed under intersection, as well as a generalization of that theorem due to Fortnow and Reingold. This illustrates that quantum computing can yield new and simpler proofs of major results about classical computation.
Quantum and Classical Strong Direct Product Theorems and Optimal TimeSpace Tradeoffs
 SIAM Journal on Computing
, 2004
"... A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum ..."
Abstract

Cited by 66 (12 self)
 Add to MetaCart
(Show Context)
A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum query complexity of the OR function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing k instances of the Disjointness function. Our direct product theorems...
Improved simulation of stabilizer circuits
 Phys. Rev. Lett
"... The GottesmanKnill theorem says that a stabilizer circuit—that is, a quantum circuit consisting solely of CNOT, Hadamard, and phase gates—can be simulated efficiently on a classical computer. This paper improves that theorem in several directions. • By removing the need for Gaussian elimination, we ..."
Abstract

Cited by 65 (6 self)
 Add to MetaCart
(Show Context)
The GottesmanKnill theorem says that a stabilizer circuit—that is, a quantum circuit consisting solely of CNOT, Hadamard, and phase gates—can be simulated efficiently on a classical computer. This paper improves that theorem in several directions. • By removing the need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a factor2 increase in the number of bits needed to represent a state. We have implemented the improved algorithm in a freelyavailable program called CHP (CNOTHadamardPhase), which can handle thousands of qubits easily. • We show that the problem of simulating stabilizer circuits is complete for the classical complexity class ⊕L, which means that stabilizer circuits are probably not even universal for classical computation. • We give efficient algorithms for computing the inner product between two stabilizer states, putting any nqubit stabilizer circuit into a “canonical form ” that requires at most O ( n 2 /log n) gates, and other useful tasks. • We extend our simulation algorithm to circuits acting on mixed states, circuits containing a limited number of nonstabilizer gates, and circuits acting on general tensorproduct initial states but containing only a limited number of measurements. 1
NPcomplete problems and physical reality
 ACM SIGACT News Complexity Theory Column, March. ECCC
, 2005
"... Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Mal ..."
Abstract

Cited by 59 (6 self)
 Add to MetaCart
(Show Context)
Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, MalamentHogarth spacetimes, quantum gravity, closed timelike curves, and “anthropic computing. ” The section on soap bubbles even includes some “experimental ” results. While I do not believe that any of the proposals will let us solve NPcomplete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics. 1
ZeroKnowledge Against Quantum Attacks
 STOC'06
, 2006
"... This paper proves that several interactive proof systems are zeroknowledge against general quantum attacks. This includes the wellknown GoldreichMicaliWigderson classical zeroknowledge protocols for Graph Isomorphism and Graph 3Coloring (assuming the existence of quantum computationally conceal ..."
Abstract

Cited by 53 (0 self)
 Add to MetaCart
(Show Context)
This paper proves that several interactive proof systems are zeroknowledge against general quantum attacks. This includes the wellknown GoldreichMicaliWigderson classical zeroknowledge protocols for Graph Isomorphism and Graph 3Coloring (assuming the existence of quantum computationally concealing commitment schemes in the second case). Also included is a quantum interactive protocol for a complete problem for the complexity class of problems having “honest verifier” quantum statistical zeroknowledge proofs, which therefore establishes that honest verifier and general quantum statistical zeroknowledge are equal: QSZK = QSZK HV. Previously no nontrivial proof systems were known to be zeroknowledge against quantum attacks, except in restricted settings such as the honestverifier and common reference string models. This paper therefore establishes for the first time that true zeroknowledge is indeed possible in the presence of quantum information and computation.
Exponential separation of quantum and classical oneway communication complexity
 SIAM J. Comput
"... Abstract. We give the first exponential separation between quantum and boundederror randomized oneway communication complexity. Specifically, we define the Hidden Matching Problem HMn: Alice gets as input a string x ∈ {0, 1} n and Bob gets a perfect matching M on the n coordinates. Bob’s goal is t ..."
Abstract

Cited by 48 (4 self)
 Add to MetaCart
(Show Context)
Abstract. We give the first exponential separation between quantum and boundederror randomized oneway communication complexity. Specifically, we define the Hidden Matching Problem HMn: Alice gets as input a string x ∈ {0, 1} n and Bob gets a perfect matching M on the n coordinates. Bob’s goal is to output a tuple 〈i, j, b 〉 such that the edge (i, j) belongs to the matching M and b = xi ⊕ xj. We prove that the quantum oneway communication complexity of HMn is O(log n), yet any randomized oneway protocol with bounded error must use Ω ( √ n) bits of communication. No asymptotic gap for oneway communication was previously known. Our bounds also hold in the model of Simultaneous Messages (SM) and hence we provide the first exponential separation between quantum SM and randomized SM with public coins. For a Boolean decision version of HMn, we show that the quantum oneway communication complexity remains O(log n) and that the 0error randomized oneway communication complexity is Ω(n). We prove that any randomized linear oneway protocol with bounded error for this problem requires Ω ( 3 √ n log n) bits of communication. Key words. Communication complexity, quantum computation, separation, hidden matching AMS subject classifications. 68P30,68Q15,68Q17,81P68 1. Introduction. The
Quantum versus classical proofs and advice
 In preparation
, 2006
"... Abstract: This paper studies whether quantum proofs are more powerful than classical proofs, or in complexity terms, whether QMA = QCMA. We prove three results about this question. First, we give a “quantum oracle separation ” between QMA and QCMA. More concretely, we show that any quantum algorithm ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
(Show Context)
Abstract: This paper studies whether quantum proofs are more powerful than classical proofs, or in complexity terms, whether QMA = QCMA. We prove three results about this question. First, we give a “quantum oracle separation ” between QMA and QCMA. More concretely, we show that any quantum algorithm needs Ω queries to find an n� � 2 n m+1 qubit “marked state ” ψ〉, even if given an mbit classical description of ψ 〉 together with a quantum black box that recognizes ψ〉. Second, we give an explicit QCMA protocol that nearly achieves this lower bound. Third, we show that, in the one previouslyknown case where quantum proofs seemed to provide an exponential advantage, classical proofs are basically just as powerful. In particular, Watrous gave a QMA protocol for verifying nonmembership in finite groups. Under plausible grouptheoretic assumptions, we give a QCMA protocol for the same problem. Even with no assumptions, our protocol makes only polynomially many queries to the group oracle. We end with some conjectures about quantum versus classical oracles, and about the possibility of a classical oracle separation between QMA and QCMA. ACM Classification: F.1.2, F.1.3
Entangled games are hard to approximate
 SIAM J. Comput
"... All intext references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
All intext references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
A new quantum lower bound method, with an application to strong direct product theorem for quantum search
, 2005
"... We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theorem for 2sided error quantum algorithms computing ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
(Show Context)
We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theorem for 2sided error quantum algorithms computing k independent instances of a symmetric Boolean function: if the algorithm uses significantly less than k times the number of queries needed for one instance of the function, then its success probability is exponentially small in k. We also use the polynomial method to prove a direct product theorem for 1sided error algorithms for k threshold functions with a stronger bound on the success probability. Finally, we present a quantum algorithm for evaluating solutions to systems of linear inequalities, and use our direct product theorems to show that the timespace tradeoff of this algorithm is close to optimal. Categories and Subject Descriptors F.1.2 [Computation by Abstract Devices]: Modes of Computation; F.1.3 [Computation by Abstract Devices]: Complexity Measures and Classes—Relations among complexity