Results 1  10
of
203
Private Information Retrieval
, 1997
"... Publicly accessible databases are an indispensable resource for retrieving up to date information. But they also pose a significant risk to the privacy of the user, since a curious database operator can follow the user's queries and infer what the user is after. Indeed, in cases where the users ' i ..."
Abstract

Cited by 415 (11 self)
 Add to MetaCart
Publicly accessible databases are an indispensable resource for retrieving up to date information. But they also pose a significant risk to the privacy of the user, since a curious database operator can follow the user's queries and infer what the user is after. Indeed, in cases where the users ' intentions are to be kept secret, users are often cautious about accessing the database. It can be shown that when accessing a single database, to completely guarantee the privacy of the user, the whole database should be downloaded, namely n bits should be communicated (where n is the number of bits in the database). In this work, we investigate whether by replicating the database, more efficient solutions to the private retrieval problem can be obtained. We describe schemes that enable a user to access k replicated copies of a database (k * 2) and privately retrieve information stored in the database. This means that each individual database gets no information on the identity of the item retrieved by the user. Our schemes use the replication to gain substantial saving. In particular, we have ffl A two database scheme with communication complexity of O(n1=3). ffl A scheme for a constant number, k, of databases with communication complexity O(n1=k). ffl A scheme for 13 log2 n databases with polylogarithmic (in n) communication complexity.
Automating the Design of Graphical Presentations of Relational Information
 ACM Transactions on Graphics
, 1986
"... The goal of the research described in this paper is to develop an applicationindependent presentation tool that automatically designs effective graphical presentations (such as bar charts, scatter plots, and connected graphs) of relational information. Two problems are raised by this goal: The codi ..."
Abstract

Cited by 394 (5 self)
 Add to MetaCart
The goal of the research described in this paper is to develop an applicationindependent presentation tool that automatically designs effective graphical presentations (such as bar charts, scatter plots, and connected graphs) of relational information. Two problems are raised by this goal: The codification of graphic design criteria in a form that can be used by the presentation tool, and the generation of a wide variety of designs so that the presentation tool can accommodate a wide variety of information. The approach described in this paper is based on the view that graphical presentations are sentences of graphical languages. The graphic design issues are codified as expressiveness and effectiveness criteria for graphical languages. Expressiveness criteria determine whether a graphical language can express the desired information. Effectiveness criteria determine whether a graphical language exploits the capabilities of the output medium and the human visual system. A wide variety of designs can be systematically generated by using a composition algebra that composes a small set of primitive graphical languages. Artificial intelligence techniques are used to implement a prototype presentation tool called APT (A Presentation Tool), which is based on the composition algebra and the graphic design criteria.
Constraint Query Languages
, 1992
"... We investigate the relationship between programming with constraints and database query languages. We show that efficient, declarative database programming can be combined with efficient constraint solving. The key intuition is that the generalization of a ground fact, or tuple, is a conjunction ..."
Abstract

Cited by 336 (35 self)
 Add to MetaCart
We investigate the relationship between programming with constraints and database query languages. We show that efficient, declarative database programming can be combined with efficient constraint solving. The key intuition is that the generalization of a ground fact, or tuple, is a conjunction of constraints over a small number of variables. We describe the basic Constraint Query Language design principles and illustrate them with four classes of constraints: real polynomial inequalities, dense linear order inequalities, equalities over an infinite domain, and boolean equalities. For the analysis, we use quantifier elimination techniques from logic and the concept of data complexity from database theory. This framework is applicable to managing spatial data and can be combined with existing multidimensional searching algorithms and data structures.
Relational Queries Computable in Polynomial Time
 Information and Control
, 1986
"... We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several ..."
Abstract

Cited by 271 (17 self)
 Add to MetaCart
We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several alternations of fixed point and negation. This proves that the fixed point query hierarchy suggested by Chandra and Harel collapses at the first fixed point level. It is also a general result showing that in finite model theory one application of fixed point suffices. Introduction and Summary Query languages for relational databases have received considerable attention. In 1972 Codd showed that two natural languages for queries  one algebraic and the other a version of first order predicate calculus  have identical powers of expressibility, [Cod72]. Query languages which are as expressive as Codd's Relational Calculus are sometimes called complete. This term is misleading however becau...
Query optimization in database systems
 ACM Computing Surveys
, 1984
"... Efficient methods of processing unanticipated queries are a crucial prerequisite for the success of generalized database management systems. A wide variety of approaches to improve the performance of query evaluation algorithms have been proposed: logicbased and semantic transformations, fast imple ..."
Abstract

Cited by 207 (0 self)
 Add to MetaCart
Efficient methods of processing unanticipated queries are a crucial prerequisite for the success of generalized database management systems. A wide variety of approaches to improve the performance of query evaluation algorithms have been proposed: logicbased and semantic transformations, fast implementations of basic operations, and combinatorial or heuristic algorithms for generating alternative access plans and choosing among them. These methods are presented in the framework of a general query evaluation procedure using the relational calculus representation of queries. In addition, nonstandard query optimization issues such as higher level query evaluation, query optimization in distributed databases, and use of database machines are addressed. The focus, however, is on query optimization in centralized database systems.
Types and persistence in database programming languages
 ACM Computing Surveys
, 1987
"... Databases and have developed one another for Traditionally, the interface between a programming language and a database has either ..."
Abstract

Cited by 157 (2 self)
 Add to MetaCart
Databases and have developed one another for Traditionally, the interface between a programming language and a database has either
Logic and databases: a deductive approach
 ACM Computing Surveys
, 1984
"... The purpose of this paper is to show that logic provides a convenient formalism for studying classical database problems. There are two main parts to the paper, devoted respectively to conventional databases and deductive databases. In the first part, we focus on query languages, integrity modeling ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
The purpose of this paper is to show that logic provides a convenient formalism for studying classical database problems. There are two main parts to the paper, devoted respectively to conventional databases and deductive databases. In the first part, we focus on query languages, integrity modeling and maintenance, query optimization, and data
A Logical Design Methodology for Relational Databases Using the Extended EntityRelationship Model
 ACM Computing Surveys
, 1986
"... A database design methodology is defined for the design of large relational databases. First, the data requirements are conceptualized using an extended entityrelationship model, with the extensions being additional semantics such as ternary relationships, optional relationships, and the generaliza ..."
Abstract

Cited by 141 (1 self)
 Add to MetaCart
A database design methodology is defined for the design of large relational databases. First, the data requirements are conceptualized using an extended entityrelationship model, with the extensions being additional semantics such as ternary relationships, optional relationships, and the generalization abstraction. The extended entityrelationship model is then decomposed according to a set of basic entityrelationship constructs, and these are transformed into candidate relations. A set of basic transformations has been developed for the three types of relations: entity relations, extended entity relations, and relationship relations. Candidate relations are further analyzed and modified to attain the highest degree of normalization desired. The methodology produces database designs that are not only accurate representations of reality, but flexible enough to accommodate future processing requirements. It also reduces the number of data dependencies that must be analyzed, using the extended ER model conceptualization, and maintains data integrity through normalization. This approach can be implemented manually or in a simple software package as long as a “good ” solution is acceptable and absolute optimality is not required.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 125 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Designing objectoriented synchronous groupware with COAST
, 1996
"... This paper introduces COAST, an objectoriented toolkit for the development of synchronous groupware, which enhances the usability and simplifies the development of such applications. COAST offers basic and generic components for the design of synchronous groupware and is complemented by a methodolo ..."
Abstract

Cited by 104 (13 self)
 Add to MetaCart
This paper introduces COAST, an objectoriented toolkit for the development of synchronous groupware, which enhances the usability and simplifies the development of such applications. COAST offers basic and generic components for the design of synchronous groupware and is complemented by a methodology for groupware development. Basic features of the toolkit include transactioncontrolled access to replicated shared objects, transparent replication management, and a fully optimistic concurrency control. Development support is provided by a session concept supporting the flexible coupling of shared objects' aspects between concurrent users and by a fully transparent updating concept for displays which is based on declarative programming. KEYWORDS: toolkit, synchronous collaboration, groupware, replicated objects, sessions, display updating, concurrency control 1 INTRODUCTION Groupware allows several geographically distributed people to work together with the aid of a computerized envi...