Results 1  10
of
98
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 737 (66 self)
 Add to MetaCart
(Show Context)
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature; these lead to very effective importance distributions. Furthermore we describe a method which uses RaoBlackwellisation in order to take advantage of the analytic structure present in some important classes of statespace models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 598 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Filtering via simulation: auxiliary particle filter
 Journal of the American Statistical Association
, 1999
"... ..."
Sequential Monte Carlo Methods for Dynamic Systems
 Journal of the American Statistical Association
, 1998
"... A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ..."
Abstract

Cited by 510 (9 self)
 Add to MetaCart
(Show Context)
A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ingredients: importance sampling and resampling, rejection sampling, and Markov chain iterations. We deliver a guideline on how they should be used and under what circumstance each method is most suitable. Through the analysis of differences and connections, we consolidate these methods into a generic algorithm by combining desirable features. In addition, we propose a general use of RaoBlackwellization to improve performances. Examples from econometrics and engineering are presented to demonstrate the importance of RaoBlackwellization and to compare different Monte Carlo procedures. Keywords: Blind deconvolution; Bootstrap filter; Gibbs sampling; Hidden Markov model; Kalman filter; Markov...
Mixture Kalman filters
, 2000
"... In treating dynamic systems,sequential Monte Carlo methods use discrete samples to represent a complicated probability distribution and use rejection sampling, importance sampling and weighted resampling to complete the online `filtering' task. We propose a special sequential Monte Carlo metho ..."
Abstract

Cited by 174 (5 self)
 Add to MetaCart
(Show Context)
In treating dynamic systems,sequential Monte Carlo methods use discrete samples to represent a complicated probability distribution and use rejection sampling, importance sampling and weighted resampling to complete the online `filtering' task. We propose a special sequential Monte Carlo method,the mixture Kalman filter, which uses a random mixture of the Gaussian distributions to approximate a target distribution. It is designed for online estimation and prediction of conditional and partial conditional dynamic linear models,which are themselves a class of widely used nonlinear systems and also serve to approximate many others. Compared with a few available filtering methods including Monte Carlo methods,the gain in efficiency that is provided by the mixture Kalman filter can be very substantial. Another contribution of the paper is the formulation of many nonlinear systems into conditional or partial conditional linear form,to which the mixture Kalman filter can be applied. Examples in target tracking and digital communications are given to demonstrate the procedures proposed.
The Unscented Particle Filter
, 2000
"... In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available info ..."
Abstract

Cited by 163 (9 self)
 Add to MetaCart
In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available information and, secondly, it can have heavy tails. As a result, we find that the algorithm outperforms standard particle filtering and other nonlinear filtering methods very substantially. This experimental finding is in agreement with the theoretical convergence proof for the algorithm. The algorithm also includes resampling and (possibly) Markov chain Monte Carlo (MCMC) steps.
Particle Filters for State Estimation of Jump Markov Linear Systems
, 2001
"... Jump Markov linear systems (JMLS) are linear systems whose parameters evolve with time according to a finite state Markov chain. In this paper, our aim is to recursively compute optimal state estimates for this class of systems. We present efficient simulationbased algorithms called particle filter ..."
Abstract

Cited by 137 (10 self)
 Add to MetaCart
(Show Context)
Jump Markov linear systems (JMLS) are linear systems whose parameters evolve with time according to a finite state Markov chain. In this paper, our aim is to recursively compute optimal state estimates for this class of systems. We present efficient simulationbased algorithms called particle filters to solve the optimal filtering problem as well as the optimal fixedlag smoothing problem. Our algorithms combine sequential importance sampling, a selection scheme, and Markov chain Monte Carlo methods. They use several variance reduction methods to make the most of the statistical structure of JMLS. Computer
Monte Carlo smoothing for nonlinear time series
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2004
"... We develop methods for performing smoothing computations in general statespace models. The methods rely on a particle representation of the filtering distributions, and their evolution through time using sequential importance sampling and resampling ideas. In particular, novel techniques are pr ..."
Abstract

Cited by 104 (16 self)
 Add to MetaCart
We develop methods for performing smoothing computations in general statespace models. The methods rely on a particle representation of the filtering distributions, and their evolution through time using sequential importance sampling and resampling ideas. In particular, novel techniques are presented for generation of sample realizations of historical state sequences. This is carried out in a forwardfiltering backwardsmoothing procedure which can be viewed as the nonlinear, nonGaussian counterpart of standard Kalman filterbased simulation smoothers in the linear Gaussian case. Convergence in the meansquared error sense of the smoothed trajectories is proved, showing the validity of our proposed method. The methods are tested in a substantial application for the processing of speech signals represented by a timevarying autoregression and parameterised in terms of timevarying partial correlation coe#cients, comparing the results of our algorithm with those from a simple smoother based upon the filtered trajectories.
Dynamic Conditional Independence Models And Markov Chain Monte Carlo Methods
 Journal of the American Statistical Association
, 1997
"... In dynamic statistical modeling situations, observations arise sequentially, causing the model to expand by progressive incorporation of new data items and new unknown parameters. For example, in clinical monitoring, new patientspecific parameters are introduced with each new patient. Markov chain ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
In dynamic statistical modeling situations, observations arise sequentially, causing the model to expand by progressive incorporation of new data items and new unknown parameters. For example, in clinical monitoring, new patientspecific parameters are introduced with each new patient. Markov chain Monte Carlo (MCMC) might be used for posterior inference, but would need to be redone at each expansion stage. Thus such methods are often too slow for realtime implementation. By combining MCMC with importanceresampling, we show how realtime posterior updating can be effected. The proposed dynamic sampling algorithms utilize posterior samples from previous expansion stages, and exploit conditional independence between groups of parameters to allow samples of parameters no longer of interest to be discarded, such as when a patient dies or is discharged. We apply the methods to monitoring of heart transplant recipients during infection from cytomegalovirus. KEY WORDS : Bayesian Inference, ...