Results 1  10
of
30
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 210 (8 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Subgraph Isomorphism in Planar Graphs and Related Problems
, 1999
"... We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to ..."
Abstract

Cited by 113 (1 self)
 Add to MetaCart
We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to solve other planar graph problems including connectivity, diameter, girth, induced subgraph isomorphism, and shortest paths.
Compact Routing with Minimum Stretch
 Journal of Algorithms
"... We present the first universal compact routing algorithm with maximum stretch bounded by 3 that uses sublinear space at every vertex. The algorithm uses local routing tables of size O(n 2=3 log 4=3 n) and achieves paths that are most 3 times the length of the shortest path distances for all node ..."
Abstract

Cited by 112 (5 self)
 Add to MetaCart
We present the first universal compact routing algorithm with maximum stretch bounded by 3 that uses sublinear space at every vertex. The algorithm uses local routing tables of size O(n 2=3 log 4=3 n) and achieves paths that are most 3 times the length of the shortest path distances for all nodes in an arbitrary weighted undirected network. This answers an open question of Gavoille and Gengler who showed that any universal compact routing algorithm with maximum stretch strictly less than 3 must use\Omega\Gamma n) local space at some vertex. 1 Introduction Let G = (V; E) with jV j = n be a labeled undirected network. Assuming that a positive cost, or distance is assigned with each edge, the stretch of path p(u; v) from node u to node v is defined as jp(u;v)j jd(u;v)j , where jd(u; v)j is the length of the shortest u \Gamma v path. The approximate allpairs shortest path problem involves a tradeoff of stretch against time short paths with stretch bounded by a constant are com...
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
Graph distances in the streaming model: the value of space
 In ACMSIAM Symposium on Discrete Algorithms
, 2005
"... We investigate the importance of space when solving problems based on graph distance in the streaming model. In this model, the input graph is presented as a stream of edges in an arbitrary order. The main computational restriction of the model is that we have limited space and therefore cannot stor ..."
Abstract

Cited by 52 (10 self)
 Add to MetaCart
We investigate the importance of space when solving problems based on graph distance in the streaming model. In this model, the input graph is presented as a stream of edges in an arbitrary order. The main computational restriction of the model is that we have limited space and therefore cannot store all the streamed data; we are forced to make spaceefficient summaries of the data as we go along. For a graph of n vertices and m edges, we show that testing many graph properties, including connectivity (ergo any reasonable decision problem about distances) and bipartiteness, requires Ω(n) bits of space. Given this, we then investigate how the power of the model increases as we relax our space restriction. Our main result is an efficient randomized algorithm that constructs a (2t + 1)spanner in one pass. With high probability, it uses O(t · n 1+1/t log 2 n) bits of space and processes each edge in the stream in O(t 2 · n 1/t log n) time. We find approximations to diameter and girth via the log n constructed spanner. For t = Ω (), the space log log n requirement of the algorithm is O(n·polylog n), and the peredge processing time is O(polylog n). We also show a corresponding lower bound of t for the approximation ratio achievable when the space restriction is O(t · n1+1/t log 2 n). We then consider the scenario in which we are allowed multiple passes over the input stream. Here, we investigate whether allowing these extra passes will compensate for a given space restriction. We show that ∗This work was supported by the DoD University Research Initiative (URI) administered by the Office of Naval Research
AllPairs SmallStretch Paths
 Journal of Algorithms
, 1997
"... Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that f ..."
Abstract

Cited by 36 (8 self)
 Add to MetaCart
Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that finding paths of stretch less than 2 between all pairs of vertices in an undirected graph with n vertices is at least as hard as the Boolean multiplication of two n \Theta n matrices. We describe three algorithms for finding smallstretch paths between all pairs of vertices in a weighted graph with n vertices and m edges. The first algorithm, STRETCH 2 , runs in ~ O(n 3=2 m 1=2 ) time and finds stretch 2 paths. The second algorithm, STRETCH 7=3 , runs in ~ O(n 7=3 ) time and finds stretch 7/3 paths. Finally, the third algorithm, STRETCH 3 , runs in ~ O(n 2 ) and finds stretch 3 paths. Our algorithms are simpler, more efficient and more accurate than the previously best algorithms ...
Roundtrip Spanners and Roundtrip Routing in Directed Graphs
"... We introduce the notion of roundtripspanners of weighted directed graphs and describe ecient algorithms for their construction. For every integer k 1 and any > 0, we show that any directed graph on n vertices with edge weights in the range [1; W ] has a (2k + )roundtripspanner with O( ed ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
We introduce the notion of roundtripspanners of weighted directed graphs and describe ecient algorithms for their construction. For every integer k 1 and any > 0, we show that any directed graph on n vertices with edge weights in the range [1; W ] has a (2k + )roundtripspanner with O( edges. We then extend these constructions and obtain compact roundtrip routing schemes. For every integer k 1 and every > 0, we describe a roundtrip routing scheme that has stretch 4k + , and uses at each vertex a routing table of size ~ O( log(nW )). We also show that any weighted directed graph with arbitrary positive edge weights has a 3roundtripspanner with O(n ) edges. This result is optimal. Finally, we present a stretch 3 roundtrip routing scheme that uses local routing tables of size ~ O(n ). This routing scheme is essentially optimal. The roundtripspanner constructions and the roundtrip routing schemes for directed graphs that we describe are only slightly worse than the best available spanners and routing schemes for undirected graphs. Our roundtrip routing schemes substantially improve previous results of Cowen and Wagner. Our results are obtained by combining ideas of Cohen, Cowen and Wagner, Thorup and Zwick, with some new ideas.
Piecemeal Graph Exploration by a Mobile Robot
, 1995
"... We study how a mobile robot can piecemeal learn an unknown environment. The robot's goal is to learn a complete map of its environment, while satisfying the constraint that it must return every so often to its starting position s #for refueling, say#. ..."
Abstract

Cited by 28 (3 self)
 Add to MetaCart
We study how a mobile robot can piecemeal learn an unknown environment. The robot's goal is to learn a complete map of its environment, while satisfying the constraint that it must return every so often to its starting position s #for refueling, say#.
Efficient algorithms for constructing (1 + ɛ, β)spanners in the distributed and streaming models
 Distributed Computing
, 2004
"... For an unweighted undirected graph G = (V, E), and a pair of positive integers α ≥ 1, β ≥ 0, a subgraph G ′ = (V, H), H ⊆ E, is called an (α, β)spanner of G if for every pair of vertices u, v ∈ V, distG ′(u, v) ≤ α · distG(u, v) + β. It was shown in [20] that for any ɛ> 0, κ = 1, 2,..., there exi ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
For an unweighted undirected graph G = (V, E), and a pair of positive integers α ≥ 1, β ≥ 0, a subgraph G ′ = (V, H), H ⊆ E, is called an (α, β)spanner of G if for every pair of vertices u, v ∈ V, distG ′(u, v) ≤ α · distG(u, v) + β. It was shown in [20] that for any ɛ> 0, κ = 1, 2,..., there exists an integer β = β(ɛ, κ) such that for every nvertex graph G there exists a (1 + ɛ, β)spanner G ′ with O(n 1+1/κ) edges. An efficient distributed protocol for constructing (1+ ɛ, β)spanners was devised in [18]. The running time and the communication complexity of that protocol are O(n 1+ρ) and O(En ρ), respectively, where ρ is an additional control parameter of the protocol that affects only the additive term β. In this paper we devise a protocol with a drastically improved running time (O(n ρ) as opposed to O(n 1+ρ)) for constructing (1 + ɛ, β)spanners. Our protocol has the same communication complexity as the protocol of [18], and it constructs spanners with essentially the same properties as the spanners that are constructed by the protocol of [18]. We also show that our protocol for constructing (1+ɛ, β)spanners can be adapted to the streaming model, and devise a streaming algorithm that uses a constant number of passes and O(n 1+1/κ · log n) bits of space for computing allpairsalmostshortestpaths of length at most by a multiplicative factor (1 + ɛ) and an additive term of β greater than the shortest paths. Our algorithm processes each edge in time O(n ρ), for an arbitrarily small ρ> 0. The only