Results 1 
3 of
3
TypeBased Termination of Recursive Definitions
, 2002
"... This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the techn ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the technical machinery behind our system puts a slightly different emphasis on the interpretation of types. More precisely, we formalize the notion of typebased termination using a restricted form of type dependency (a.k.a. indexed types), as popularized by (Xi and Pfenning 1998; Xi and Pfenning 1999). This leads to a simple and intuitive system which is robust under several extensions, such as mutually inductive datatypes and mutually recursive function definitions; however, such extensions are not treated in the paper
Termination Checking with Types
, 1999
"... The paradigm of typebased termination is explored for functional programming with recursive data types. The article introduces , a lambdacalculus with recursion, inductive types, subtyping and bounded quanti cation. Decorated type variables representing approximations of inductive types ..."
Abstract

Cited by 32 (6 self)
 Add to MetaCart
The paradigm of typebased termination is explored for functional programming with recursive data types. The article introduces , a lambdacalculus with recursion, inductive types, subtyping and bounded quanti cation. Decorated type variables representing approximations of inductive types are used to track the size of function arguments and return values. The system is shown to be type safe and strongly normalizing. The main novelty is a bidirectional type checking algorithm whose soundness is established formally.
Termination and Productivity Checking with Continuous Types
"... Abstract. We analyze the interpretation of inductive and coinductive types as sets of strongly normalizing terms and isolate classes of types with certain continuity properties. Our result enables us to relax some side conditions on the shape of recursive definitions which are accepted by the typeb ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We analyze the interpretation of inductive and coinductive types as sets of strongly normalizing terms and isolate classes of types with certain continuity properties. Our result enables us to relax some side conditions on the shape of recursive definitions which are accepted by the typebased termination calculus of Barthe, Frade, Giménez, Pinto and Uustalu, thus enlarging its expressivity. 1 Introduction and Related Work Interactive theorem provers like Coq [13], LEGO [20] and Twelf [18] support proofs by induction on finitedepth (inductive) structures (like natural numbers, lists, infinitely branching trees) and infinitedepth (coinductive) structures (like streams, processes, trees with infinite paths) in the form of recursive programs.