Results 1 
5 of
5
Indexed InductionRecursion
, 2001
"... We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in ..."
Abstract

Cited by 44 (16 self)
 Add to MetaCart
We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in intuitionistic type theory. The more restricted of the two axiomatization arises naturally by considering indexed inductiverecursive de nitions as initial algebras in slice categories, whereas the other admits a more general and convenient form of an introduction rule.
Universes for Generic Programs and Proofs in Dependent Type Theory
 Nordic Journal of Computing
, 2003
"... We show how to write generic programs and proofs in MartinL of type theory. To this end we consider several extensions of MartinL of's logical framework for dependent types. Each extension has a universes of codes (signatures) for inductively defined sets with generic formation, introduction, el ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
We show how to write generic programs and proofs in MartinL of type theory. To this end we consider several extensions of MartinL of's logical framework for dependent types. Each extension has a universes of codes (signatures) for inductively defined sets with generic formation, introduction, elimination, and equality rules. These extensions are modeled on Dybjer and Setzer's finitely axiomatized theories of inductiverecursive definitions, which also have a universe of codes for sets, and generic formation, introduction, elimination, and equality rules.
TypeBased Termination of Recursive Definitions
, 2002
"... This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the techn ..."
Abstract

Cited by 39 (3 self)
 Add to MetaCart
This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the technical machinery behind our system puts a slightly different emphasis on the interpretation of types. More precisely, we formalize the notion of typebased termination using a restricted form of type dependency (a.k.a. indexed types), as popularized by (Xi and Pfenning 1998; Xi and Pfenning 1999). This leads to a simple and intuitive system which is robust under several extensions, such as mutually inductive datatypes and mutually recursive function definitions; however, such extensions are not treated in the paper
GUSTT: An Amorphous Slicing System which Combines Slicing and Transformation
 In 1 st Workshop on Analysis, Slicing, and Transformation (AST 2001
, 2001
"... This paper presents a system for amorphous program slicing which combines slicing and transformation to achieve thinner slices than are possible using conventional syntaxpreserving slicing. The approach involves the validation of the transformation and slicing steps using the Coq proof assistant, t ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
This paper presents a system for amorphous program slicing which combines slicing and transformation to achieve thinner slices than are possible using conventional syntaxpreserving slicing. The approach involves the validation of the transformation and slicing steps using the Coq proof assistant, thereby guaranteeing the correctness of the amorphous slices produced. The combined application of slicing and transformation is illustrated with a simple case study.
Least and Greatest Fixed Points in Intuitionistic Natural Deduction
, 2002
"... This paper is a comparative study of a number of (intensionalsemantically distinct) least and greatest fixed point operators that naturaldeduction proof systems for intuitionistic logics can be extended with in a prooftheoretically defendable way. Eight pairs of such operators are analysed. The e ..."
Abstract
 Add to MetaCart
This paper is a comparative study of a number of (intensionalsemantically distinct) least and greatest fixed point operators that naturaldeduction proof systems for intuitionistic logics can be extended with in a prooftheoretically defendable way. Eight pairs of such operators are analysed. The exposition is centered around a cubeshaped classification where each node stands for an axiomatization of one pair of operators as logical constants by intended proof and reduction rules and each arc for a proof and reductionpreserving encoding of one pair in terms of another. The three dimensions of the cube reflect three orthogonal binary options: conventionalstyle vs. Mendlerstyle, basic (``[co]iterative'') vs. enhanced (``primitive[co]recursive''), simple vs. courseofvalue [co]induction. Some of the axiomatizations and encodings are wellknown; others, however, are novel; the classification into a cube is also new. The differences between the least fixed point operators considered are illustrated on the example of the corresponding natural number types.