Results 1 
6 of
6
An Extension of Models of Axiomatic Domain Theory to Models of Synthetic Domain Theory
 In Proceedings of CSL 96
, 1997
"... . We relate certain models of Axiomatic Domain Theory (ADT) and Synthetic Domain Theory (SDT). On the one hand, we introduce a class of nonelementary models of SDT and show that the domains in them yield models of ADT. On the other hand, for each model of ADT in a wide class we construct a model of ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
. We relate certain models of Axiomatic Domain Theory (ADT) and Synthetic Domain Theory (SDT). On the one hand, we introduce a class of nonelementary models of SDT and show that the domains in them yield models of ADT. On the other hand, for each model of ADT in a wide class we construct a model of SDT such that the domains in it provide a model of ADT which conservatively extends the original model. Introduction The aim of Axiomatic Domain Theory (ADT) is to axiomatise the structure needed on a category so that its objects can be considered to be domains (see [11, x Axiomatic Domain Theory]). Models of axiomatic domain theory are given with respect to an enrichment base provided by a model of intuitionistic linear type theory [2, 3]. These enrichment structures consist of a monoidal adjunction C \Gamma! ? /\Gamma D between a cartesian closed category C and a symmetric monoidal closed category with finite products D, as well as with an !inductive fixedpoint object (Definition 1...
Computational Adequacy in an Elementary Topos
 Proceedings CSL ’98, Springer LNCS 1584
, 1999
"... . We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises whe ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
. We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises when the model is computationally adequate with respect to the operational semantics of the programming language. We prove that computational adequacy holds if and only if the topos is 1consistent (i.e. its internal logic validates only true \Sigma 0 1 sentences). 1 Introduction One axiomatic approach to domain theory is based on axiomatizing properties of the category of predomains (in which objects need not have a "least" element). Typically, such a category is assumed to be bicartesian closed (although it is not really necessary to require all exponentials) with natural numbers object, allowing the denotations of simple datatypes to be determined by universal properties. It is well known...
Computational Adequacy for Recursive Types in Models of Intuitionistic Set Theory
 In Proc. 17th IEEE Symposium on Logic in Computer Science
, 2003
"... This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown that the existence of solutions to recursive domain equations depends upon the strength of the set theory. We observe that the internal set theory of an elementary topos is not strong enough to guarantee their existence. In contrast, as our first main result, we establish that solutions to recursive domain equations do exist when the category of sets is a model of full intuitionistic ZermeloFraenkel set theory. We then apply this result to obtain a denotational interpretation of FPC, a recursively typed lambdacalculus with callbyvalue operational semantics. By exploiting the intuitionistic logic of the ambient model of intuitionistic set theory, we analyse the relationship between operational and denotational semantics. We first prove an “internal ” computational adequacy theorem: the model always believes that the operational and denotational notions of termination agree. This allows us to identify, as our second main result, a necessary and sufficient condition for genuine “external ” computational adequacy to hold, i.e. for the operational and denotational notions of termination to coincide in the real world. The condition is formulated as a simple property of the internal logic, related to the logical notion of 1consistency. We provide useful sufficient conditions for establishing that the logical property holds in practice. Finally, we outline how the methods of the paper may be applied to concrete models of FPC. In doing so, we obtain computational adequacy results for an extensive range of realizability and domaintheoretic models.
Axioms and (Counter)examples in Synthetic Domain Theory
 Annals of Pure and Applied Logic
, 1998
"... this paper we adopt the most popular choice, the internal logic of an elementary topos (with nno), also chosen, e.g., in [23, 8, 26]. The principal benefits are that models of the logic (toposes) are ubiquitous, and the methods for constructing and analysing them are very wellestablished. For the p ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
this paper we adopt the most popular choice, the internal logic of an elementary topos (with nno), also chosen, e.g., in [23, 8, 26]. The principal benefits are that models of the logic (toposes) are ubiquitous, and the methods for constructing and analysing them are very wellestablished. For the purposes of the axiomatic part of this paper, we believe that it would also be
Domains in H
"... We give various internal descriptions of the category !Cpo of !complete posets and !continuous functions in the model H of Synthetic Domain Theory introduced in [8]. It follows that the !cpos lie between the two extreme synthetic notions of domain given by repleteness and wellcompleteness. Int ..."
Abstract
 Add to MetaCart
We give various internal descriptions of the category !Cpo of !complete posets and !continuous functions in the model H of Synthetic Domain Theory introduced in [8]. It follows that the !cpos lie between the two extreme synthetic notions of domain given by repleteness and wellcompleteness. Introduction Synthetic Domain Theory aims at giving a few simple axioms to be added to an intuitionistic set theory in order to obtain domainlike sets. The idea at the core of this study was proposed by Dana Scott in the late 70's: domains should be certain "sets" in a mathematical universe where domain theory would be available. In particular, domains would come with intrinsic notions of approximation and passage to the limit with respect to which all functions will be continuous. Various suggestions for the notion of domain (typically within a settheoretic universe given by an elementary topos with natural numbers object [17]) appeared in the literature, e.g. in [11, 26, 10, 23, 20, 16]. A...
The King's Buildings Edinburgh EH9 3JZ, Scotland
"... We provide an internal characterization of the category!Cpo of!complete posets and!continuous functions within the model H of SDT recently introduced by the authors. It follows that!cpos lie between the two extreme synthetic notions of domain given by repleteness and wellcompleteness. ..."
Abstract
 Add to MetaCart
We provide an internal characterization of the category!Cpo of!complete posets and!continuous functions within the model H of SDT recently introduced by the authors. It follows that!cpos lie between the two extreme synthetic notions of domain given by repleteness and wellcompleteness.