Results 1  10
of
23
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 458 (20 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Programming with Intersection Types and Bounded Polymorphism
, 1991
"... representing the official policies, either expressed or implied, of the U.S. Government. ..."
Abstract

Cited by 67 (4 self)
 Add to MetaCart
representing the official policies, either expressed or implied, of the U.S. Government.
Intersection Types and Bounded Polymorphism
, 1996
"... this paper (Compagnoni, Intersection Types and Bounded Polymorphism 3 1994; Compagnoni, 1995) has been used in a typetheoretic model of objectoriented multiple inheritance (Compagnoni & Pierce, 1996). Related calculi combining restricted forms of intersection types with higherorder polymorph ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
this paper (Compagnoni, Intersection Types and Bounded Polymorphism 3 1994; Compagnoni, 1995) has been used in a typetheoretic model of objectoriented multiple inheritance (Compagnoni & Pierce, 1996). Related calculi combining restricted forms of intersection types with higherorder polymorphism and dependent types have been studied by Pfenning (Pfenning, 1993). Following a more detailed discussion of the pure systems of intersections and bounded quantification (Section 2), we describe, in Section 3, a typed calculus called F ("Fmeet ") integrating the features of both. Section 4 gives some examples illustrating this system's expressive power. Section 5 presents the main results of the paper: a prooftheoretic analysis of F 's subtyping and typechecking relations leading to algorithms for checking subtyping and for synthesizing minimal types for terms. Section 6 discusses semantic aspects of the calculus, obtaining a simple soundness proof for the typing rules by interpreting types as partial equivalence relations; however, another prooftheoretic result, the nonexistence of least upper bounds for arbitrary pairs of types, implies that typed models may be more difficult to construct. Section 7 offers concluding remarks. 2. Background
A Uniform Approach to Domain Theory in Realizability Models
 Mathematical Structures in Computer Science
, 1996
"... this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability&quo ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies and modest sets. Next, in Section 4, we prepare for our development of domain theory with an analysis of nontermination. Previous approaches have used (relatively complicated) categorical formulations of partial maps for this purpose. Instead, motivated by the idea that A provides a primitive programming language, we consider a simple notion of "diverging" computation within A itself. This leads to a theory of divergences from which a notion of (computable) partial function is derived together with a lift monad classifying partial functions. The next task is to isolate a subcategory of modest sets with sufficient structure for supporting analogues of the usual domaintheoretic constructions. First, we expect to be able to interpret the standard constructions of total type theory in this category, so it should inherit cartesianclosure, coproducts and the natural numbers from modest sets. Second, it should interact well with the notion of partiality, so it should be closed under application of the lift functor. Third, it should allow the recursive definition of partial functions. This is achieved by obtaining a fixpoint object in the category, as defined in (Crole and Pitts 1992). Finally, although there is in principle no definitive list of requirements on such a category, one would like it to support more complicated constructions such as those required to interpret polymorphic and recursive types. The central part of the paper (Sections 5, 6, 7 and 9) is devoted to establish...
HigherOrder Intersection Types and Multiple Inheritance
, 1995
"... this paper was completed, the metatheory of this system has been studied in much greater detail by Compagnoni [ Compagnoni, 1994, Compagnoni, 1995 ] . A type system combining intersection types with a powerful form of polymorphism is of independent interest. Reynolds [ 1988 ] has argued that interse ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
this paper was completed, the metatheory of this system has been studied in much greater detail by Compagnoni [ Compagnoni, 1994, Compagnoni, 1995 ] . A type system combining intersection types with a powerful form of polymorphism is of independent interest. Reynolds [ 1988 ] has argued that intersection types can form the basis of elegant language designs. But his Forsythe language has only a firstorder type system, and thus lacks some of the expressive possibilities of polymorphic languages like ML. Our work represents a step toward a synthesis of these styles of language design. The following section shows some examples of multiple inheritance using a simple highlevel syntax. Section 3, the core of the paper, defines the calculus F
An Extension of Models of Axiomatic Domain Theory to Models of Synthetic Domain Theory
 In Proceedings of CSL 96
, 1997
"... . We relate certain models of Axiomatic Domain Theory (ADT) and Synthetic Domain Theory (SDT). On the one hand, we introduce a class of nonelementary models of SDT and show that the domains in them yield models of ADT. On the other hand, for each model of ADT in a wide class we construct a model of ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
. We relate certain models of Axiomatic Domain Theory (ADT) and Synthetic Domain Theory (SDT). On the one hand, we introduce a class of nonelementary models of SDT and show that the domains in them yield models of ADT. On the other hand, for each model of ADT in a wide class we construct a model of SDT such that the domains in it provide a model of ADT which conservatively extends the original model. Introduction The aim of Axiomatic Domain Theory (ADT) is to axiomatise the structure needed on a category so that its objects can be considered to be domains (see [11, x Axiomatic Domain Theory]). Models of axiomatic domain theory are given with respect to an enrichment base provided by a model of intuitionistic linear type theory [2, 3]. These enrichment structures consist of a monoidal adjunction C \Gamma! ? /\Gamma D between a cartesian closed category C and a symmetric monoidal closed category with finite products D, as well as with an !inductive fixedpoint object (Definition 1...
General Synthetic Domain Theory  A Logical Approach
 Math. Struct. in Comp. Sci
, 1997
"... Synthetic Domain Theory (SDT) is a version of Domain Theory where "all functions are continuous". In [14, 12] there has been developed a logical and axiomatic version of SDT which is special in the sense that it captures the essence of Domain Theory `a la Scott but rules out other impo ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
Synthetic Domain Theory (SDT) is a version of Domain Theory where "all functions are continuous". In [14, 12] there has been developed a logical and axiomatic version of SDT which is special in the sense that it captures the essence of Domain Theory `a la Scott but rules out other important notions of domain. In this article we will give a logical and axiomatic account of General Synthetic Domain Theory (GSDT) aiming to grasp the structure common to all notions of domain as advocated by various authors. As in [14, 12] the underlying logic is a sufficiently expressive version of constructive type theory. We start with a few basic axioms giving rise to a core theory on top of which we study various notions of predomains as wellcomplete and replete Sspaces [9], define the appropriate notion of domain and verify the usual induction principles. 1
Computational Adequacy in an Elementary Topos
 Proceedings CSL ’98, Springer LNCS 1584
, 1999
"... . We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises whe ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
. We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises when the model is computationally adequate with respect to the operational semantics of the programming language. We prove that computational adequacy holds if and only if the topos is 1consistent (i.e. its internal logic validates only true \Sigma 0 1 sentences). 1 Introduction One axiomatic approach to domain theory is based on axiomatizing properties of the category of predomains (in which objects need not have a "least" element). Typically, such a category is assumed to be bicartesian closed (although it is not really necessary to require all exponentials) with natural numbers object, allowing the denotations of simple datatypes to be determined by universal properties. It is well known...