Results 11  20
of
32
A Uniform Approach to Domain Theory in Realizability Models
 Mathematical Structures in Computer Science
, 1996
"... this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies an ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies and modest sets. Next, in Section 4, we prepare for our development of domain theory with an analysis of nontermination. Previous approaches have used (relatively complicated) categorical formulations of partial maps for this purpose. Instead, motivated by the idea that A provides a primitive programming language, we consider a simple notion of "diverging" computation within A itself. This leads to a theory of divergences from which a notion of (computable) partial function is derived together with a lift monad classifying partial functions. The next task is to isolate a subcategory of modest sets with sufficient structure for supporting analogues of the usual domaintheoretic constructions. First, we expect to be able to interpret the standard constructions of total type theory in this category, so it should inherit cartesianclosure, coproducts and the natural numbers from modest sets. Second, it should interact well with the notion of partiality, so it should be closed under application of the lift functor. Third, it should allow the recursive definition of partial functions. This is achieved by obtaining a fixpoint object in the category, as defined in (Crole and Pitts 1992). Finally, although there is in principle no definitive list of requirements on such a category, one would like it to support more complicated constructions such as those required to interpret polymorphic and recursive types. The central part of the paper (Sections 5, 6, 7 and 9) is devoted to establish...
Topical Categories of Domains
, 1997
"... this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2 ..."
Abstract

Cited by 19 (18 self)
 Add to MetaCart
this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2
An Extension of Models of Axiomatic Domain Theory to Models of Synthetic Domain Theory
 In Proceedings of CSL 96
, 1997
"... . We relate certain models of Axiomatic Domain Theory (ADT) and Synthetic Domain Theory (SDT). On the one hand, we introduce a class of nonelementary models of SDT and show that the domains in them yield models of ADT. On the other hand, for each model of ADT in a wide class we construct a model of ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
. We relate certain models of Axiomatic Domain Theory (ADT) and Synthetic Domain Theory (SDT). On the one hand, we introduce a class of nonelementary models of SDT and show that the domains in them yield models of ADT. On the other hand, for each model of ADT in a wide class we construct a model of SDT such that the domains in it provide a model of ADT which conservatively extends the original model. Introduction The aim of Axiomatic Domain Theory (ADT) is to axiomatise the structure needed on a category so that its objects can be considered to be domains (see [11, x Axiomatic Domain Theory]). Models of axiomatic domain theory are given with respect to an enrichment base provided by a model of intuitionistic linear type theory [2, 3]. These enrichment structures consist of a monoidal adjunction C \Gamma! ? /\Gamma D between a cartesian closed category C and a symmetric monoidal closed category with finite products D, as well as with an !inductive fixedpoint object (Definition 1...
Complete Cuboidal Sets in Axiomatic Domain Theory (Extended Abstract)
 In Proceedings of 12th Annual Symposium on Logic in Computer Science
, 1997
"... ) Marcelo Fiore !mf@dcs.ed.ac.uk? Gordon Plotkin y !gdp@dcs.ed.ac.uk? John Power !ajp@dcs.ed.ac.uk? Department of Computer Science Laboratory for Foundations of Computer Science University of Edinburgh, The King's Buildings Edinburgh EH9 3JZ, Scotland Abstract We study the enrichment of ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
) Marcelo Fiore !mf@dcs.ed.ac.uk? Gordon Plotkin y !gdp@dcs.ed.ac.uk? John Power !ajp@dcs.ed.ac.uk? Department of Computer Science Laboratory for Foundations of Computer Science University of Edinburgh, The King's Buildings Edinburgh EH9 3JZ, Scotland Abstract We study the enrichment of models of axiomatic domain theory. To this end, we introduce a new and broader notion of domain, viz. that of complete cuboidal set, that complies with the axiomatic requirements. We show that the category of complete cuboidal sets provides a general notion of enrichment for a wide class of axiomatic domaintheoretic structures. Introduction The aim of Axiomatic Domain Theory (ADT) is to provide a conceptual understanding of why domains are adequate as mathematical models of computation. (For a discussion see [12, x Axiomatic Domain Theory ].) The approach taken is to axiomatise the structure needed on a category so that its objects can be considered as domains, and its maps as continuous...
Relational Properties of Recursively Defined Domains
 In 8th Annual Symposium on Logic in Computer Science
, 1993
"... This paper describes a mixed induction/coinduction property of relations on recursively defined domains. We work within a general framework for relations on domains and for actions of type constructors on relations introduced by O'Hearn and Tennent [20], and draw upon Freyd's analysis [7] of recurs ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper describes a mixed induction/coinduction property of relations on recursively defined domains. We work within a general framework for relations on domains and for actions of type constructors on relations introduced by O'Hearn and Tennent [20], and draw upon Freyd's analysis [7] of recursive types in terms of a simultaneous initiality/finality property. The utility of the mixed induction/coinduction property is demonstrated by deriving a number of families of proof principles from it. One instance of the relational framework yields a family of induction principles for admissible subsets of general recursively defined domains which extends the principle of structural induction for inductively defined sets. Another instance of the framework yields the coinduction principle studied by the author in [22], by which equalities between elements of recursively defined domains may be proved via `bisimulations'. 1 Introduction A characteristic feature of higherorder functional lan...
Axioms for Recursion in CallbyValue
 HIGHERORDER AND SYMBOLIC COMPUT
, 2001
"... We propose an axiomatization of fixpoint operators in typed callbyvalue programming languages, and give its justifications in two ways. First, it is shown to be sound and complete for the notion of uniform Tfixpoint operators of Simpson and Plotkin. Second, the axioms precisely account for Filins ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We propose an axiomatization of fixpoint operators in typed callbyvalue programming languages, and give its justifications in two ways. First, it is shown to be sound and complete for the notion of uniform Tfixpoint operators of Simpson and Plotkin. Second, the axioms precisely account for Filinski's fixpoint operator derived from an iterator (infinite loop constructor) in the presence of firstclass continuations, provided that we define the uniformity principle on such an iterator via a notion of effectfreeness (centrality). We then explain how these two results are related in terms of the underlying categorical structures.
A Sound Metalogical Semantics for Input/Output Effects
, 1994
"... . We study the longstanding problem of semantics for input /output (I/O) expressed using sideeffects. Our vehicle is a small higherorder imperative language, with operations for interactive character I/O and based on ML syntax. Unlike previous theories, we present both operational and denotational ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
. We study the longstanding problem of semantics for input /output (I/O) expressed using sideeffects. Our vehicle is a small higherorder imperative language, with operations for interactive character I/O and based on ML syntax. Unlike previous theories, we present both operational and denotational semantics for I/O effects. We use a novel labelled transition system that uniformly expresses both applicative and imperative computation. We make a standard definition of bisimilarity and prove it is a congruence using Howe's method. Next, we define a metalogical type theory M in which we may give a denotational semantics to O. M generalises Crole and Pitts' FIXlogic by adding in a parameterised recursive datatype, which is used to model I/O. M comes equipped both with judgements of equality of expressions, and an operational semantics; M itself is given a domaintheoretic semantics in the category CPPO of cppos (bottompointed posets with joins of !chains) and Scott continuous functions...
General Synthetic Domain Theory  A Logical Approach
 Math. Struct. in Comp. Sci
, 1997
"... Synthetic Domain Theory (SDT) is a version of Domain Theory where "all functions are continuous". In [14, 12] there has been developed a logical and axiomatic version of SDT which is special in the sense that it captures the essence of Domain Theory `a la Scott but rules out other important noti ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
Synthetic Domain Theory (SDT) is a version of Domain Theory where "all functions are continuous". In [14, 12] there has been developed a logical and axiomatic version of SDT which is special in the sense that it captures the essence of Domain Theory `a la Scott but rules out other important notions of domain. In this article we will give a logical and axiomatic account of General Synthetic Domain Theory (GSDT) aiming to grasp the structure common to all notions of domain as advocated by various authors. As in [14, 12] the underlying logic is a sufficiently expressive version of constructive type theory. We start with a few basic axioms giving rise to a core theory on top of which we study various notions of predomains as wellcomplete and replete Sspaces [9], define the appropriate notion of domain and verify the usual induction principles. 1
Computational Adequacy in an Elementary Topos
 Proceedings CSL ’98, Springer LNCS 1584
, 1999
"... . We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises whe ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
. We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises when the model is computationally adequate with respect to the operational semantics of the programming language. We prove that computational adequacy holds if and only if the topos is 1consistent (i.e. its internal logic validates only true \Sigma 0 1 sentences). 1 Introduction One axiomatic approach to domain theory is based on axiomatizing properties of the category of predomains (in which objects need not have a "least" element). Typically, such a category is assumed to be bicartesian closed (although it is not really necessary to require all exponentials) with natural numbers object, allowing the denotations of simple datatypes to be determined by universal properties. It is well known...
Axioms and (Counter)examples in Synthetic Domain Theory
 Annals of Pure and Applied Logic
, 1998
"... this paper we adopt the most popular choice, the internal logic of an elementary topos (with nno), also chosen, e.g., in [23, 8, 26]. The principal benefits are that models of the logic (toposes) are ubiquitous, and the methods for constructing and analysing them are very wellestablished. For the p ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
this paper we adopt the most popular choice, the internal logic of an elementary topos (with nno), also chosen, e.g., in [23, 8, 26]. The principal benefits are that models of the logic (toposes) are ubiquitous, and the methods for constructing and analysing them are very wellestablished. For the purposes of the axiomatic part of this paper, we believe that it would also be