Results 1 
2 of
2
Crossing numbers and hard Erdős problems in discrete geometry
 COMBINATORICS, PROBABILITY AND COMPUTING
, 1997
"... We show that an old but not wellknown lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry which were considered hard before: the number of incidences among points and lines, the maximum number of unit distances among n points, the min ..."
Abstract

Cited by 151 (1 self)
 Add to MetaCart
We show that an old but not wellknown lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry which were considered hard before: the number of incidences among points and lines, the maximum number of unit distances among n points, the minimum number of distinct distances among n points.