Results 1 
6 of
6
Codable Sets and Orbits of Computably Enumerable Sets
 J. Symbolic Logic
, 1995
"... A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let E denote the structure of the computably enumerable sets under inclusion, E = (fW e g e2! ; `). We previously exhibited a first order ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let E denote the structure of the computably enumerable sets under inclusion, E = (fW e g e2! ; `). We previously exhibited a first order Edefinable property Q(X) such that Q(X) guarantees that X is not Turing complete (i.e., does not code complete information about c.e. sets). Here we show first that Q(X) implies that X has a certain "slowness " property whereby the elements must enter X slowly (under a certain precise complexity measure of speed of computation) even though X may have high information content. Second we prove that every X with this slowness property is computable in some member of any nontrivial orbit, namely for any noncomputable A 2 E there exists B in the orbit of A such that X T B under relative Turing computability ( T ). We produce B using the \Delta 0 3 automorphism method we introduced earli...
There is no Fat Orbit
 Ann. Pure Appl. Logic
"... We give a proof of a theorem of Harrington that there is no orbit of the lattice of recursively enumerable sets containing elements of each nonzero recursively enumerable degree. We also establish some degree theoretical extensions. ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
(Show Context)
We give a proof of a theorem of Harrington that there is no orbit of the lattice of recursively enumerable sets containing elements of each nonzero recursively enumerable degree. We also establish some degree theoretical extensions.
An Overview of the Computably Enumerable Sets
"... The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do not study the partial ordering of the c.e. degrees under Turing reducibility, although a number of the results here relate the algebraic structure of a c.e. set A to its (Turing) degree in the sense of the information content of A. We consider here various properties of E: (1) deønable properties; (2) automorphisms; (3) invariant properties; (4) decidability and undecidability results; miscellaneous results. This is not intended to be a comprehensive survey of all results in the subject since 1987, but we give a number of references in the bibliography to other results.
Dynamic Properties of Computably Enumerable Sets
 In Computability, Enumerability, Unsolvability, volume 224 of London Math. Soc. Lecture Note Ser
, 1995
"... A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating t ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating the denable (especially Edenable) properties of a c.e. set A to its iinformation contentj, namely its Turing degree, deg(A), under T , the usual Turing reducibility. [Turing 1939]. Recently, Harrington and Soare answered a question arising from Post's program by constructing a nonemptly Edenable property Q(A) which guarantees that A is incomplete (A !T K). The property Q(A) is of the form (9C)[A ae m C & Q \Gamma (A; C)], where A ae m C abbreviates that iA is a major subset of Cj, and Q \Gamma (A; C) contains the main ingredient for incompleteness. A dynamic property P (A), such as prompt simplicity, is one which is dened by considering how fast elements elements enter A relat...
Definable properties of the computably enumerable sets
 Proceedings of the Oberwolfach Conference on Computability Theory
, 1996
"... Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in ..."
Abstract
 Add to MetaCart
Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in the inclusion ordering of c.e. subsets of!, namely E = (fWngn2! ; ae). In the 1950's and 1960's Tennenbaum, Martin, Yates, Sacks, Lachlan, Shoenfield and others produced a number of elegant results relating Edefinable properties of A, like maximal, hhsimple, atomless, to the information content (usually the