Results 1  10
of
629
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
(Show Context)
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.
An introduction to the conjugate gradient method without the agonizing pain
, 1994
"... ..."
(Show Context)
The Quadratic Eigenvalue Problem
, 2001
"... . We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skewHermitian) and t ..."
Abstract

Cited by 266 (20 self)
 Add to MetaCart
(Show Context)
. We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skewHermitian) and the spectral properties of the problem. We classify numerical methods and catalogue available software. Key words. quadratic eigenvalue problem, eigenvalue, eigenvector, matrix, matrix polynomial, secondorder differential equation, vibration, Millennium footbridge, overdamped system, gyroscopic system, linearization, backward error, pseudospectrum, condition number, Krylov methods, Arnoldi method, Lanczos method, JacobiDavidson method AMS subject classifications. 65F30 Contents 1 Introduction 2 2 Applications of QEPs 4 2.1 Secondorder differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Vibration analysis of structural systems ...
Deeper inside pagerank
 Internet Mathematics
, 2004
"... Abstract. This paper serves as a companion or extension to the “Inside PageRank” paper by Bianchini et al. [Bianchini et al. 03]. It is a comprehensive survey of all issues associated with PageRank, covering the basic PageRank model, available and recommended solution methods, storage issues, existe ..."
Abstract

Cited by 207 (4 self)
 Add to MetaCart
(Show Context)
Abstract. This paper serves as a companion or extension to the “Inside PageRank” paper by Bianchini et al. [Bianchini et al. 03]. It is a comprehensive survey of all issues associated with PageRank, covering the basic PageRank model, available and recommended solution methods, storage issues, existence, uniqueness, and convergence properties, possible alterations to the basic model, suggested alternatives to the traditional solution methods, sensitivity and conditioning, and finally the updating problem. We introduce a few new results, provide an extensive reference list, and speculate about exciting areas of future research. 1.
Jacobianfree NewtonKrylov methods: a survey of approaches and applications
 J. Comput. Phys
"... Jacobianfree NewtonKrylov (JFNK) methods are synergistic combinations of Newtontype methods for superlinearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations. The link between the two methods is the Jacobianvector product, which ..."
Abstract

Cited by 192 (6 self)
 Add to MetaCart
(Show Context)
Jacobianfree NewtonKrylov (JFNK) methods are synergistic combinations of Newtontype methods for superlinearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations. The link between the two methods is the Jacobianvector product, which may be probed approximately without forming and storing the elements of the true Jacobian, through a variety of means. Various approximations to the Jacobian matrix may still be required for preconditioning the resulting Krylov iteration. As with Krylov methods for linear problems, successful application of the JFNK method to any given problem is dependent on adequate preconditioning. JFNK has potential for application throughout problems governed by nonlinear partial dierential equations and integrodierential equations. In this survey article we place JFNK in context with other nonlinear solution algorithms for both boundary value problems (BVPs) and initial value problems (IVPs). We provide an overview of the mechanics of JFNK and attempt to illustrate the wide variety of preconditioning options available. It is emphasized that JFNK can be wrapped (as an accelerator) around another nonlinear xed point method (interpreted as a preconditioning process, potentially with signicant code reuse). The aim of this article is not to trace fully the evolution of JFNK, nor to provide proofs of accuracy or optimal convergence for all of the constituent methods, but rather to present the reader with a perspective on how JFNK may be applicable to problems of physical interest and to provide sources of further practical information. A review paper solicited by the EditorinChief of the Journal of Computational
Preconditioning techniques for large linear systems: A survey
 J. COMPUT. PHYS
, 2002
"... This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization i ..."
Abstract

Cited by 189 (5 self)
 Add to MetaCart
(Show Context)
This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization issues, and block and multilevel extensions. Some of the challenges ahead are also discussed. An extensive bibliography completes the paper.
Matrices, vector spaces, and information retrieval
 SIAM Review
, 1999
"... Abstract. The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no short ..."
Abstract

Cited by 138 (3 self)
 Add to MetaCart
(Show Context)
Abstract. The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no shortage of textual materials on a particular topic, procedures for indexing or extracting the knowledge or conceptual information contained in them can be lacking. Recently developed information retrieval technologies are based on the concept of a vector space. Data are modeled as a matrix, and a user’s query of the database is represented as a vector. Relevant documents in the database are then identified via simple vector operations. Orthogonal factorizations of the matrix provide mechanisms for handling uncertainty in the database itself. The purpose of this paper is to show how such fundamental mathematical concepts from linear algebra can be used to manage and index large text collections. Key words. information retrieval, linear algebra, QR factorization, singular value decomposition, vector spaces
Deriving private information from randomized data
 In SIGMOD
, 2005
"... Deriving private information from randomized data ..."
Abstract

Cited by 129 (2 self)
 Add to MetaCart
Deriving private information from randomized data
Constraint Preconditioning for Indefinite Linear Systems
 SIAM J. Matrix Anal. Appl
, 2000
"... . The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and ..."
Abstract

Cited by 111 (14 self)
 Add to MetaCart
(Show Context)
. The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and form of the eigenvectors of the preconditioned matrix and its minimum polynomial are given. The consequences of these results are considered for a variety of Krylov subspace methods. Numerical experiments validate these conclusions. Key words. preconditioning, indenite matrices, Krylov subspace methods AMS subject classications. 65F10, 65F15, 65F50 1. Introduction. In this paper, we are concerned with investigating a new class of preconditioners for indenite systems of linear equations of a sort which arise in constrained optimization as well as in leastsquares, saddlepoint and Stokes problems. We attempt to solve the indenite linear system A B T B 0  {z } A x 1 x...
Improving MemorySystem Performance of Sparse MatrixVector Multiplication
 IBM Journal of Research and Development
, 1997
"... Sparse MatrixVector Multiplication is an important kernel that often runs inefficiently on superscalar RISC processors. This paper describe techniques that increase instructionlevel parallelism and improve performance. The techniques include reordering to reduce cache misses originally due to Das ..."
Abstract

Cited by 93 (0 self)
 Add to MetaCart
(Show Context)
Sparse MatrixVector Multiplication is an important kernel that often runs inefficiently on superscalar RISC processors. This paper describe techniques that increase instructionlevel parallelism and improve performance. The techniques include reordering to reduce cache misses originally due to Das et al., blocking to reduce load instructions, and prefetching to prevent multiple loadstore units from stalling simulteneously. The techniques improve performnance from about 40 Mflops (on a wellordered matrix) to over 100 Mflops on a 266 Mflops machine. The techniques are applicable to other superscalar RISC processors as well and have improved performance on a Sun UltraSparc I workstation, for example. 1 Introduction Sparse matrixvector multiplication is an important computational kernel in many iterative linear solvers (see [5], for example). Unfortunately, on many computers this kernel runs slowly relative to other numerical codes, such as dense matrix computations. This paper propos...